Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02

AUTHORS

Mikael C. Rechtsman, Julia M. Zeuner, Andreas Tünnermann, Stefan Nolte, Mordechai Segev, Alexander Szameit

ABSTRACT

Magnetic effects at optical frequencies are notoriously weak, so magneto-optical devices must be large to create a sufficient effect. In graphene, it has been shown that inhomogeneous strains can induce ‘pseudomagnetic fields’ that behave in a similar manner to real ones. Here, we show experimentally and theoretically that it is possible to induce such a field at optical frequencies in a photonic lattice. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The field yields ‘photonic Landau levels’ separated by bandgaps in the spatial spectrum of the structured dielectric lattice. The gaps between these highly degenerate levels lead to transverse optical confinement. The use of strain allows for the exploration of magnetic-like effects in a non-resonant way that would be otherwise inaccessible in optics. It also suggests the possibility that aperiodic photonic-crystal structures can achieve greater field enhancement and slow-light effects than periodic structures via high density of states at the Landau levels. Generalizing these concepts to systems beyond optics, such as matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures. More... »

PAGES

153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2012.302

DOI

http://dx.doi.org/10.1038/nphoton.2012.302

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000051323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Physics Department, Technion\u2013Israel Institute of Technology, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rechtsman", 
        "givenName": "Mikael C.", 
        "id": "sg:person.0623050645.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623050645.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeuner", 
        "givenName": "Julia M.", 
        "id": "sg:person.01121706352.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121706352.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "Andreas", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nolte", 
        "givenName": "Stefan", 
        "id": "sg:person.0767272372.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Physics Department, Technion\u2013Israel Institute of Technology, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segev", 
        "givenName": "Mordechai", 
        "id": "sg:person.0700760541.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700760541.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szameit", 
        "givenName": "Alexander", 
        "id": "sg:person.0606006160.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606006160.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.76.205402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001269578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.205402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001269578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001617213", 
          "https://doi.org/10.1038/nphoton.2008.273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.080402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002028743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.080402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002028743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005784874", 
          "https://doi.org/10.1038/nphys1515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/43/16/163001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007858274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.063813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008469871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.063813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008469871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009771888", 
          "https://doi.org/10.1038/nature02772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009771888", 
          "https://doi.org/10.1038/nature02772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011191271", 
          "https://doi.org/10.1038/nphys1420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.021806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016347363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.021806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016347363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016643415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.021802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024597088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.021802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024597088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025535137", 
          "https://doi.org/10.1038/nphys2063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030647058", 
          "https://doi.org/10.1038/nature01452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030647058", 
          "https://doi.org/10.1038/nature01452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680396", 
          "https://doi.org/10.1038/nphys1612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680396", 
          "https://doi.org/10.1038/nphys1612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031840422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031840422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366127", 
          "https://doi.org/10.1038/nmat1097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366127", 
          "https://doi.org/10.1038/nmat1097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.063901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033921283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.063901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033921283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368720", 
          "https://doi.org/10.1038/nature08293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368720", 
          "https://doi.org/10.1038/nature08293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1207335109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039322178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044539330", 
          "https://doi.org/10.1038/nature05623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045334030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045334030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045527206", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045527206", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.200810055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045628277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.113902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048342763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.113902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048342763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.053830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.053830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.5751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.5751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.085423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.085423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.103904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.103904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.093902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.093902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.103901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.103901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.13.000794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065211898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.22.000961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.002466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.002251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065226429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.001633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.002895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229078"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02", 
    "datePublishedReg": "2013-02-01", 
    "description": "Magnetic effects at optical frequencies are notoriously weak, so magneto-optical devices must be large to create a sufficient effect. In graphene, it has been shown that inhomogeneous strains can induce \u2018pseudomagnetic fields\u2019 that behave in a similar manner to real ones. Here, we show experimentally and theoretically that it is possible to induce such a field at optical frequencies in a photonic lattice. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The field yields \u2018photonic Landau levels\u2019 separated by bandgaps in the spatial spectrum of the structured dielectric lattice. The gaps between these highly degenerate levels lead to transverse optical confinement. The use of strain allows for the exploration of magnetic-like effects in a non-resonant way that would be otherwise inaccessible in optics. It also suggests the possibility that aperiodic photonic-crystal structures can achieve greater field enhancement and slow-light effects than periodic structures via high density of states at the Landau levels. Generalizing these concepts to systems beyond optics, such as matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2012.302", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures", 
    "pagination": "153", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "003ea17bf78979da233c9286aaeb9944ff204761f312a440ef5b5d8ba5127628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2012.302"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000051323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2012.302", 
      "https://app.dimensions.ai/details/publication/pub.1000051323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2012.302"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.302'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.302'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.302'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.302'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2012.302 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N0214a0ce667a41b7b90443b60efa7624
4 schema:citation sg:pub.10.1038/nature01452
5 sg:pub.10.1038/nature02772
6 sg:pub.10.1038/nature05623
7 sg:pub.10.1038/nature08293
8 sg:pub.10.1038/nmat1097
9 sg:pub.10.1038/nphoton.2008.273
10 sg:pub.10.1038/nphys1420
11 sg:pub.10.1038/nphys1515
12 sg:pub.10.1038/nphys1612
13 sg:pub.10.1038/nphys2063
14 https://app.dimensions.ai/details/publication/pub.1045527206
15 https://doi.org/10.1002/lpor.200810055
16 https://doi.org/10.1016/j.physrep.2008.04.004
17 https://doi.org/10.1073/pnas.1207335109
18 https://doi.org/10.1088/0953-4075/43/16/163001
19 https://doi.org/10.1103/physrev.69.37
20 https://doi.org/10.1103/physreva.75.063813
21 https://doi.org/10.1103/physreva.79.053830
22 https://doi.org/10.1103/physreva.84.021802
23 https://doi.org/10.1103/physreva.84.021806
24 https://doi.org/10.1103/physrevb.60.5751
25 https://doi.org/10.1103/physrevb.76.205402
26 https://doi.org/10.1103/physrevb.77.085423
27 https://doi.org/10.1103/physrevlett.100.013904
28 https://doi.org/10.1103/physrevlett.100.103904
29 https://doi.org/10.1103/physrevlett.101.080402
30 https://doi.org/10.1103/physrevlett.102.113902
31 https://doi.org/10.1103/physrevlett.103.093902
32 https://doi.org/10.1103/physrevlett.104.063901
33 https://doi.org/10.1103/physrevlett.78.1932
34 https://doi.org/10.1103/physrevlett.81.3383
35 https://doi.org/10.1103/physrevlett.98.103901
36 https://doi.org/10.1364/ol.13.000794
37 https://doi.org/10.1364/ol.22.000961
38 https://doi.org/10.1364/ol.24.000711
39 https://doi.org/10.1364/ol.30.002466
40 https://doi.org/10.1364/ol.33.002251
41 https://doi.org/10.1364/ol.34.001633
42 https://doi.org/10.1364/ol.35.002895
43 schema:datePublished 2013-02
44 schema:datePublishedReg 2013-02-01
45 schema:description Magnetic effects at optical frequencies are notoriously weak, so magneto-optical devices must be large to create a sufficient effect. In graphene, it has been shown that inhomogeneous strains can induce ‘pseudomagnetic fields’ that behave in a similar manner to real ones. Here, we show experimentally and theoretically that it is possible to induce such a field at optical frequencies in a photonic lattice. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The field yields ‘photonic Landau levels’ separated by bandgaps in the spatial spectrum of the structured dielectric lattice. The gaps between these highly degenerate levels lead to transverse optical confinement. The use of strain allows for the exploration of magnetic-like effects in a non-resonant way that would be otherwise inaccessible in optics. It also suggests the possibility that aperiodic photonic-crystal structures can achieve greater field enhancement and slow-light effects than periodic structures via high density of states at the Landau levels. Generalizing these concepts to systems beyond optics, such as matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N611e46ef8f614cb8b01d92821976c874
50 N9a0a34da9f224952b4d16a6c258437c0
51 sg:journal.1037430
52 schema:name Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures
53 schema:pagination 153
54 schema:productId N071c8d89d10b41a19ad4188ffc77c148
55 N2d64116207fa425bb513d972a26df3b5
56 N61e2a38012f94581b4fc04004376ef0b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000051323
58 https://doi.org/10.1038/nphoton.2012.302
59 schema:sdDatePublished 2019-04-10T22:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N15178f46e27d4275a2ea7d5035d3d840
62 schema:url https://www.nature.com/articles/nphoton.2012.302
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0214a0ce667a41b7b90443b60efa7624 rdf:first sg:person.0623050645.45
67 rdf:rest N34eec62ef6194d32b08d7d2098c5ddc0
68 N071c8d89d10b41a19ad4188ffc77c148 schema:name readcube_id
69 schema:value 003ea17bf78979da233c9286aaeb9944ff204761f312a440ef5b5d8ba5127628
70 rdf:type schema:PropertyValue
71 N0edb108b3180440d95b42948ea42ae79 rdf:first sg:person.0606006160.59
72 rdf:rest rdf:nil
73 N15178f46e27d4275a2ea7d5035d3d840 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N2d64116207fa425bb513d972a26df3b5 schema:name doi
76 schema:value 10.1038/nphoton.2012.302
77 rdf:type schema:PropertyValue
78 N34eec62ef6194d32b08d7d2098c5ddc0 rdf:first sg:person.01121706352.38
79 rdf:rest Ne93994522b7a457f9bd8da7ca19f218a
80 N51bb4fbc4f294102aaa641f9717b9668 rdf:first sg:person.0767272372.44
81 rdf:rest Na81fb0443652409bb0a16e71d6aae952
82 N611e46ef8f614cb8b01d92821976c874 schema:volumeNumber 7
83 rdf:type schema:PublicationVolume
84 N61e2a38012f94581b4fc04004376ef0b schema:name dimensions_id
85 schema:value pub.1000051323
86 rdf:type schema:PropertyValue
87 N9a0a34da9f224952b4d16a6c258437c0 schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 Na81fb0443652409bb0a16e71d6aae952 rdf:first sg:person.0700760541.32
90 rdf:rest N0edb108b3180440d95b42948ea42ae79
91 Ne93994522b7a457f9bd8da7ca19f218a rdf:first sg:person.0577721111.73
92 rdf:rest N51bb4fbc4f294102aaa641f9717b9668
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
97 schema:name Optical Physics
98 rdf:type schema:DefinedTerm
99 sg:journal.1037430 schema:issn 1749-4885
100 1749-4893
101 schema:name Nature Photonics
102 rdf:type schema:Periodical
103 sg:person.01121706352.38 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
104 schema:familyName Zeuner
105 schema:givenName Julia M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121706352.38
107 rdf:type schema:Person
108 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
109 schema:familyName Tünnermann
110 schema:givenName Andreas
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
112 rdf:type schema:Person
113 sg:person.0606006160.59 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
114 schema:familyName Szameit
115 schema:givenName Alexander
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606006160.59
117 rdf:type schema:Person
118 sg:person.0623050645.45 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
119 schema:familyName Rechtsman
120 schema:givenName Mikael C.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623050645.45
122 rdf:type schema:Person
123 sg:person.0700760541.32 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
124 schema:familyName Segev
125 schema:givenName Mordechai
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700760541.32
127 rdf:type schema:Person
128 sg:person.0767272372.44 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
129 schema:familyName Nolte
130 schema:givenName Stefan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44
132 rdf:type schema:Person
133 sg:pub.10.1038/nature01452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030647058
134 https://doi.org/10.1038/nature01452
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature02772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009771888
137 https://doi.org/10.1038/nature02772
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature05623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044539330
140 https://doi.org/10.1038/nature05623
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature08293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368720
143 https://doi.org/10.1038/nature08293
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat1097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032366127
146 https://doi.org/10.1038/nmat1097
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphoton.2008.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001617213
149 https://doi.org/10.1038/nphoton.2008.273
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphys1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191271
152 https://doi.org/10.1038/nphys1420
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphys1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005784874
155 https://doi.org/10.1038/nphys1515
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphys1612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680396
158 https://doi.org/10.1038/nphys1612
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphys2063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025535137
161 https://doi.org/10.1038/nphys2063
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1045527206 schema:CreativeWork
164 https://doi.org/10.1002/lpor.200810055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045628277
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.physrep.2008.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016643415
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.1207335109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039322178
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-4075/43/16/163001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007858274
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.69.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823134
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreva.75.063813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008469871
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreva.79.053830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505803
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreva.84.021802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024597088
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreva.84.021806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016347363
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.60.5751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594260
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.76.205402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001269578
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.77.085423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624012
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.100.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031840422
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.100.103904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753052
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.101.080402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002028743
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.102.113902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048342763
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.103.093902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755924
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.104.063901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921283
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.78.1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045334030
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.81.3383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818278
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.98.103901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833681
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1364/ol.13.000794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065211898
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1364/ol.22.000961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217445
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1364/ol.24.000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218584
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1364/ol.30.002466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223144
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1364/ol.33.002251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065226429
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1364/ol.34.001633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227257
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1364/ol.35.002895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229078
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
221 schema:name Physics Department, Technion–Israel Institute of Technology, Haifa 32000, Israel
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
224 schema:name Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...