Efficient photovoltage multiplication in carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-11

AUTHORS

Leijing Yang, Sheng Wang, Qingsheng Zeng, Zhiyong Zhang, Tian Pei, Yan Li, Lian-Mao Peng

ABSTRACT

Carbon nanotubes are direct-bandgap materials that are not only useful for nanoelectronic applications1,2, but also have the potential to make a significant impact on the next generation of photovoltaic technology3,4,5. A semiconducting single-walled carbon nanotube (SWCNT) has an unusual band structure, as a result of which high-efficiency carrier multiplication effects have been predicted and observed6,7 and films of SWCNTs with absorption close to 100% have been reported8. Other features that are also important for photovoltaic applications include high mobility9,10 and the availability of ohmic contacts for both electrons11,12 and holes13. However, the photovoltage generated from a typical semiconducting SWCNT is less than 0.2 V, which is too small for most practical photovoltaic applications. Here, we show that this value may be readily multiplied by using virtual contacts at the carbon nanotube. In one example, more than 1.0 V is generated from a 10-μm-long carbon nanotube with a single-cell photovoltage of ∼0.2 V. More... »

PAGES

672

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2011.250

DOI

http://dx.doi.org/10.1038/nphoton.2011.250

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052639497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China", 
            "Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Leijing", 
        "id": "sg:person.01140761116.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140761116.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng", 
        "id": "sg:person.0752733733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Qingsheng", 
        "id": "sg:person.01256404252.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256404252.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhiyong", 
        "id": "sg:person.01266511511.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pei", 
        "givenName": "Tian", 
        "id": "sg:person.01270031122.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270031122.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yan", 
        "id": "sg:person.0722456474.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722456474.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China", 
            "Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lian-Mao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200703210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002644273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034841q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012159801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034841q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012159801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9024243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013564885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9024243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013564885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022989830", 
          "https://doi.org/10.1038/nnano.2010.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022989830", 
          "https://doi.org/10.1038/nnano.2010.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026419943", 
          "https://doi.org/10.1038/ncomms1313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn800708w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027112166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029726181", 
          "https://doi.org/10.1038/nnano.2009.319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029726181", 
          "https://doi.org/10.1038/nnano.2009.319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200701309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031677056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102122x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039612834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102122x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039612834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072369t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045612451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072369t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045612451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048340052", 
          "https://doi.org/10.1038/nmat1865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2009.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050975066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051376546", 
          "https://doi.org/10.1038/nphoton.2008.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201002563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061871v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061871v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101513z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101513z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8018802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8018802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1769595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057818307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2010598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057835786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1176112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1176112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5496.1552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2004.1419208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094278456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vlsid.2006.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095728774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098905405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11", 
    "datePublishedReg": "2011-11-01", 
    "description": "Carbon nanotubes are direct-bandgap materials that are not only useful for nanoelectronic applications1,2, but also have the potential to make a significant impact on the next generation of photovoltaic technology3,4,5. A semiconducting single-walled carbon nanotube (SWCNT) has an unusual band structure, as a result of which high-efficiency carrier multiplication effects have been predicted and observed6,7 and films of SWCNTs with absorption close to 100% have been reported8. Other features that are also important for photovoltaic applications include high mobility9,10 and the availability of ohmic contacts for both electrons11,12 and holes13. However, the photovoltage generated from a typical semiconducting SWCNT is less than 0.2 V, which is too small for most practical photovoltaic applications. Here, we show that this value may be readily multiplied by using virtual contacts at the carbon nanotube. In one example, more than 1.0 V is generated from a 10-\u03bcm-long carbon nanotube with a single-cell photovoltage of \u223c0.2 V.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2011.250", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5003020", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4948815", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5007976", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5011882", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Efficient photovoltage multiplication in carbon nanotubes", 
    "pagination": "672", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fabd0f71e3f91d97eda183e05936ba8b8357ecf9fdbe7fbf1555c628bd264696"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2011.250"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052639497"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2011.250", 
      "https://app.dimensions.ai/details/publication/pub.1052639497"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2011.250"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.250'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.250'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.250'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.250'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2011.250 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nec71822a349f49669d1aac1524634e19
4 schema:citation sg:pub.10.1038/nature01797
5 sg:pub.10.1038/ncomms1313
6 sg:pub.10.1038/nmat1865
7 sg:pub.10.1038/nnano.2009.319
8 sg:pub.10.1038/nnano.2010.68
9 sg:pub.10.1038/nphoton.2008.94
10 https://doi.org/10.1002/adfm.201002563
11 https://doi.org/10.1002/adma.200703210
12 https://doi.org/10.1002/smll.200701309
13 https://doi.org/10.1016/j.solmat.2009.04.006
14 https://doi.org/10.1021/nl034841q
15 https://doi.org/10.1021/nl061871v
16 https://doi.org/10.1021/nl072369t
17 https://doi.org/10.1021/nl101513z
18 https://doi.org/10.1021/nl102122x
19 https://doi.org/10.1021/nl8018802
20 https://doi.org/10.1021/nl9024243
21 https://doi.org/10.1021/nn800708w
22 https://doi.org/10.1063/1.1769595
23 https://doi.org/10.1063/1.2010598
24 https://doi.org/10.1103/revmodphys.79.677
25 https://doi.org/10.1109/iedm.2004.1419208
26 https://doi.org/10.1109/vlsid.2006.57
27 https://doi.org/10.1126/science.1176112
28 https://doi.org/10.1126/science.290.5496.1552
29 https://doi.org/10.1142/p276
30 schema:datePublished 2011-11
31 schema:datePublishedReg 2011-11-01
32 schema:description Carbon nanotubes are direct-bandgap materials that are not only useful for nanoelectronic applications1,2, but also have the potential to make a significant impact on the next generation of photovoltaic technology3,4,5. A semiconducting single-walled carbon nanotube (SWCNT) has an unusual band structure, as a result of which high-efficiency carrier multiplication effects have been predicted and observed6,7 and films of SWCNTs with absorption close to 100% have been reported8. Other features that are also important for photovoltaic applications include high mobility9,10 and the availability of ohmic contacts for both electrons11,12 and holes13. However, the photovoltage generated from a typical semiconducting SWCNT is less than 0.2 V, which is too small for most practical photovoltaic applications. Here, we show that this value may be readily multiplied by using virtual contacts at the carbon nanotube. In one example, more than 1.0 V is generated from a 10-μm-long carbon nanotube with a single-cell photovoltage of ∼0.2 V.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N9d4eb029fcf74725ac6128dd5a0366ad
37 Nc6a19c482e01403d9e1afd4a14660621
38 sg:journal.1037430
39 schema:name Efficient photovoltage multiplication in carbon nanotubes
40 schema:pagination 672
41 schema:productId Nadec079739324662af26f66f9019ca38
42 Nba2692b02a19416c83cde57ca763d040
43 Nd5366d4704004b39bfe172365f2d3c88
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052639497
45 https://doi.org/10.1038/nphoton.2011.250
46 schema:sdDatePublished 2019-04-10T18:09
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nca411bb751cc4df6aa7fb34d64ca1ee0
49 schema:url https://www.nature.com/articles/nphoton.2011.250
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N30e3894a6e7048cfbc0691a499c3574a rdf:first sg:person.010515521607.58
54 rdf:rest rdf:nil
55 N7ac9b4e46f3643d8b2389d2f5989c629 rdf:first sg:person.0752733733.34
56 rdf:rest Ne1af99a374c24a13a693ed57025a7585
57 N82d93c0b20644d57a82bf7ace9655d72 rdf:first sg:person.01266511511.29
58 rdf:rest Nef8f2cdc6b834266b46df7d60fce7cab
59 N9d4eb029fcf74725ac6128dd5a0366ad schema:issueNumber 11
60 rdf:type schema:PublicationIssue
61 Nadec079739324662af26f66f9019ca38 schema:name dimensions_id
62 schema:value pub.1052639497
63 rdf:type schema:PropertyValue
64 Nba2692b02a19416c83cde57ca763d040 schema:name readcube_id
65 schema:value fabd0f71e3f91d97eda183e05936ba8b8357ecf9fdbe7fbf1555c628bd264696
66 rdf:type schema:PropertyValue
67 Nc6a19c482e01403d9e1afd4a14660621 schema:volumeNumber 5
68 rdf:type schema:PublicationVolume
69 Nca411bb751cc4df6aa7fb34d64ca1ee0 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nd5366d4704004b39bfe172365f2d3c88 schema:name doi
72 schema:value 10.1038/nphoton.2011.250
73 rdf:type schema:PropertyValue
74 Ne1af99a374c24a13a693ed57025a7585 rdf:first sg:person.01256404252.37
75 rdf:rest N82d93c0b20644d57a82bf7ace9655d72
76 Nec71822a349f49669d1aac1524634e19 rdf:first sg:person.01140761116.00
77 rdf:rest N7ac9b4e46f3643d8b2389d2f5989c629
78 Nef8f2cdc6b834266b46df7d60fce7cab rdf:first sg:person.01270031122.55
79 rdf:rest Nf060480da9474a338e08609696c01468
80 Nf060480da9474a338e08609696c01468 rdf:first sg:person.0722456474.10
81 rdf:rest N30e3894a6e7048cfbc0691a499c3574a
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:grant.4948815 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.250
89 rdf:type schema:MonetaryGrant
90 sg:grant.5003020 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.250
91 rdf:type schema:MonetaryGrant
92 sg:grant.5007976 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.250
93 rdf:type schema:MonetaryGrant
94 sg:grant.5011882 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.250
95 rdf:type schema:MonetaryGrant
96 sg:journal.1037430 schema:issn 1749-4885
97 1749-4893
98 schema:name Nature Photonics
99 rdf:type schema:Periodical
100 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
101 schema:familyName Peng
102 schema:givenName Lian-Mao
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
104 rdf:type schema:Person
105 sg:person.01140761116.00 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
106 schema:familyName Yang
107 schema:givenName Leijing
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140761116.00
109 rdf:type schema:Person
110 sg:person.01256404252.37 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
111 schema:familyName Zeng
112 schema:givenName Qingsheng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256404252.37
114 rdf:type schema:Person
115 sg:person.01266511511.29 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
116 schema:familyName Zhang
117 schema:givenName Zhiyong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29
119 rdf:type schema:Person
120 sg:person.01270031122.55 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
121 schema:familyName Pei
122 schema:givenName Tian
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270031122.55
124 rdf:type schema:Person
125 sg:person.0722456474.10 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
126 schema:familyName Li
127 schema:givenName Yan
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722456474.10
129 rdf:type schema:Person
130 sg:person.0752733733.34 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
131 schema:familyName Wang
132 schema:givenName Sheng
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34
134 rdf:type schema:Person
135 sg:pub.10.1038/nature01797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124293
136 https://doi.org/10.1038/nature01797
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ncomms1313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026419943
139 https://doi.org/10.1038/ncomms1313
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nmat1865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048340052
142 https://doi.org/10.1038/nmat1865
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nnano.2009.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029726181
145 https://doi.org/10.1038/nnano.2009.319
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nnano.2010.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022989830
148 https://doi.org/10.1038/nnano.2010.68
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphoton.2008.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051376546
151 https://doi.org/10.1038/nphoton.2008.94
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/adfm.201002563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170592
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adma.200703210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002644273
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/smll.200701309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031677056
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.solmat.2009.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050975066
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl034841q schema:sameAs https://app.dimensions.ai/details/publication/pub.1012159801
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/nl061871v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216867
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nl072369t schema:sameAs https://app.dimensions.ai/details/publication/pub.1045612451
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nl101513z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218004
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl102122x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039612834
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/nl8018802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221431
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/nl9024243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013564885
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/nn800708w schema:sameAs https://app.dimensions.ai/details/publication/pub.1027112166
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1769595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057818307
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.2010598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835786
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/revmodphys.79.677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839635
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/iedm.2004.1419208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094278456
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/vlsid.2006.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095728774
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1176112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460327
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.290.5496.1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572218
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1142/p276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098905405
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
194 schema:name Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
195 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
196 Department of Electronics, Peking University, Beijing 100871, China
197 Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...