Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-08

AUTHORS

A. Dienst, M. C. Hoffmann, D. Fausti, J. C. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri

ABSTRACT

In cuprate superconductors, tunnelling between planes makes three-dimensional superconductive transport possible. However, the interlayer tunnelling amplitude is reduced when an order-parameter-phase gradient between planes is established. As such, interlayer superconductivity along the c-axis can be weakened if a strong electric field is applied along the c-axis. In this Letter, we use high-field single-cycle terahertz pulses to gate interlayer coupling in La1.84Sr0.16CuO4. We induce ultrafast oscillations between superconducting and resistive states and switch the plasmon response on and off, without reducing the density of Cooper pairs. In-plane superconductivity remains unperturbed, revealing a non-equilibrium state in which the dimensionality of the superconductivity is time-dependent. The gating frequency is determined by the electric field strength. Non-dissipative, bi-directional gating of superconductivity is of interest for device applications in ultrafast nanoelectronics and represents an example of how nonlinear terahertz physics can benefit nanoplasmonics and active metamaterials. More... »

PAGES

485

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2011.124

DOI

http://dx.doi.org/10.1038/nphoton.2011.124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052815962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dienst", 
        "givenName": "A.", 
        "id": "sg:person.013522372704.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522372704.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffmann", 
        "givenName": "M. C.", 
        "id": "sg:person.0716420520.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716420520.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, UK", 
            "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fausti", 
        "givenName": "D.", 
        "id": "sg:person.01056204010.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056204010.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, UK", 
            "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petersen", 
        "givenName": "J. C.", 
        "id": "sg:person.0774706122.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774706122.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pyon", 
        "givenName": "S.", 
        "id": "sg:person.01220546554.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220546554.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayama", 
        "givenName": "T.", 
        "id": "sg:person.0741204656.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741204656.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Advanced Science Institute", 
          "id": "https://www.grid.ac/institutes/grid.474688.1", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, Tokyo, Japan", 
            "RIKEN Advanced Science Institute, Hirosawa 2-1, Wako 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "H.", 
        "id": "sg:person.013173521545.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, UK", 
            "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavalleri", 
        "givenName": "A.", 
        "id": "sg:person.01163111022.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163111022.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/26439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000477855", 
          "https://doi.org/10.1038/26439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000477855", 
          "https://doi.org/10.1038/26439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.157002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.157002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.127003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023777949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.127003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023777949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1197294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041576847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.2254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060551594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.2254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060551594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5354.1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5354.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5398.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5465.468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.25.0000b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065172267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.26.001292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219899"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "In cuprate superconductors, tunnelling between planes makes three-dimensional superconductive transport possible. However, the interlayer tunnelling amplitude is reduced when an order-parameter-phase gradient between planes is established. As such, interlayer superconductivity along the c-axis can be weakened if a strong electric field is applied along the c-axis. In this Letter, we use high-field single-cycle terahertz pulses to gate interlayer coupling in La1.84Sr0.16CuO4. We induce ultrafast oscillations between superconducting and resistive states and switch the plasmon response on and off, without reducing the density of Cooper pairs. In-plane superconductivity remains unperturbed, revealing a non-equilibrium state in which the dimensionality of the superconductivity is time-dependent. The gating frequency is determined by the electric field strength. Non-dissipative, bi-directional gating of superconductivity is of interest for device applications in ultrafast nanoelectronics and represents an example of how nonlinear terahertz physics can benefit nanoplasmonics and active metamaterials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2011.124", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2760506", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5968375", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor", 
    "pagination": "485", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb941d8d9a4c88054f1cbbac478c868480308d907112cc881c5e1c857cfe29b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2011.124"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052815962"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2011.124", 
      "https://app.dimensions.ai/details/publication/pub.1052815962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2011.124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2011.124'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2011.124 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb1b3b05a46474790a7ae49ee135e94f7
4 schema:citation sg:pub.10.1038/26439
5 https://doi.org/10.1016/0031-9163(62)91369-0
6 https://doi.org/10.1063/1.478766
7 https://doi.org/10.1103/physrevb.40.2254
8 https://doi.org/10.1103/physrevb.49.1327
9 https://doi.org/10.1103/physrevlett.104.157002
10 https://doi.org/10.1103/physrevlett.69.1455
11 https://doi.org/10.1103/physrevlett.72.2263
12 https://doi.org/10.1103/physrevlett.91.167401
13 https://doi.org/10.1103/physrevlett.99.127003
14 https://doi.org/10.1103/revmodphys.36.216
15 https://doi.org/10.1126/science.1197294
16 https://doi.org/10.1126/science.279.5354.1193
17 https://doi.org/10.1126/science.279.5354.1196
18 https://doi.org/10.1126/science.283.5398.49
19 https://doi.org/10.1126/science.288.5465.468
20 https://doi.org/10.1364/josab.25.0000b6
21 https://doi.org/10.1364/ol.26.001292
22 schema:datePublished 2011-08
23 schema:datePublishedReg 2011-08-01
24 schema:description In cuprate superconductors, tunnelling between planes makes three-dimensional superconductive transport possible. However, the interlayer tunnelling amplitude is reduced when an order-parameter-phase gradient between planes is established. As such, interlayer superconductivity along the c-axis can be weakened if a strong electric field is applied along the c-axis. In this Letter, we use high-field single-cycle terahertz pulses to gate interlayer coupling in La1.84Sr0.16CuO4. We induce ultrafast oscillations between superconducting and resistive states and switch the plasmon response on and off, without reducing the density of Cooper pairs. In-plane superconductivity remains unperturbed, revealing a non-equilibrium state in which the dimensionality of the superconductivity is time-dependent. The gating frequency is determined by the electric field strength. Non-dissipative, bi-directional gating of superconductivity is of interest for device applications in ultrafast nanoelectronics and represents an example of how nonlinear terahertz physics can benefit nanoplasmonics and active metamaterials.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N3163786ad309476a84ebfd3598ba8656
29 N7c49e6e056c146dd981f0c677a046d72
30 sg:journal.1037430
31 schema:name Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor
32 schema:pagination 485
33 schema:productId N203ae364507146b9ab63c281ae3a7d95
34 N9face5cfe1de4c3db57c96c4bdf5f221
35 Ncf9a502744014c0c8929a812b9a69855
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052815962
37 https://doi.org/10.1038/nphoton.2011.124
38 schema:sdDatePublished 2019-04-10T20:36
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb714231827e64158b726a28f14b65aa0
41 schema:url https://www.nature.com/articles/nphoton.2011.124
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0489d54e93b04ef7b438b7bf5a500d50 rdf:first sg:person.01220546554.60
46 rdf:rest N60abc878a35e4d9999aad1a841714eed
47 N1fa288b9e33243b2870a4c65ad3bf0e1 rdf:first sg:person.013173521545.69
48 rdf:rest Nfdc22a14b3d84f359007c0729636b2b8
49 N203ae364507146b9ab63c281ae3a7d95 schema:name dimensions_id
50 schema:value pub.1052815962
51 rdf:type schema:PropertyValue
52 N3163786ad309476a84ebfd3598ba8656 schema:issueNumber 8
53 rdf:type schema:PublicationIssue
54 N4528a4dcd85c4766ab4a6ae011974aab rdf:first sg:person.0774706122.48
55 rdf:rest N0489d54e93b04ef7b438b7bf5a500d50
56 N60abc878a35e4d9999aad1a841714eed rdf:first sg:person.0741204656.49
57 rdf:rest N1fa288b9e33243b2870a4c65ad3bf0e1
58 N72fd6f5df4354af286bdb65ce0f84302 rdf:first sg:person.01056204010.65
59 rdf:rest N4528a4dcd85c4766ab4a6ae011974aab
60 N7c49e6e056c146dd981f0c677a046d72 schema:volumeNumber 5
61 rdf:type schema:PublicationVolume
62 N9face5cfe1de4c3db57c96c4bdf5f221 schema:name readcube_id
63 schema:value fb941d8d9a4c88054f1cbbac478c868480308d907112cc881c5e1c857cfe29b5
64 rdf:type schema:PropertyValue
65 Nb1b3b05a46474790a7ae49ee135e94f7 rdf:first sg:person.013522372704.24
66 rdf:rest Nb970db0ed5424a489a6c1157ecfa1f7a
67 Nb714231827e64158b726a28f14b65aa0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nb970db0ed5424a489a6c1157ecfa1f7a rdf:first sg:person.0716420520.84
70 rdf:rest N72fd6f5df4354af286bdb65ce0f84302
71 Ncf9a502744014c0c8929a812b9a69855 schema:name doi
72 schema:value 10.1038/nphoton.2011.124
73 rdf:type schema:PropertyValue
74 Nfdc22a14b3d84f359007c0729636b2b8 rdf:first sg:person.01163111022.09
75 rdf:rest rdf:nil
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:grant.2760506 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.124
83 rdf:type schema:MonetaryGrant
84 sg:grant.5968375 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2011.124
85 rdf:type schema:MonetaryGrant
86 sg:journal.1037430 schema:issn 1749-4885
87 1749-4893
88 schema:name Nature Photonics
89 rdf:type schema:Periodical
90 sg:person.01056204010.65 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
91 schema:familyName Fausti
92 schema:givenName D.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056204010.65
94 rdf:type schema:Person
95 sg:person.01163111022.09 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
96 schema:familyName Cavalleri
97 schema:givenName A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163111022.09
99 rdf:type schema:Person
100 sg:person.01220546554.60 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
101 schema:familyName Pyon
102 schema:givenName S.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220546554.60
104 rdf:type schema:Person
105 sg:person.013173521545.69 schema:affiliation https://www.grid.ac/institutes/grid.474688.1
106 schema:familyName Takagi
107 schema:givenName H.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69
109 rdf:type schema:Person
110 sg:person.013522372704.24 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
111 schema:familyName Dienst
112 schema:givenName A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522372704.24
114 rdf:type schema:Person
115 sg:person.0716420520.84 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
116 schema:familyName Hoffmann
117 schema:givenName M. C.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716420520.84
119 rdf:type schema:Person
120 sg:person.0741204656.49 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
121 schema:familyName Takayama
122 schema:givenName T.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741204656.49
124 rdf:type schema:Person
125 sg:person.0774706122.48 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
126 schema:familyName Petersen
127 schema:givenName J. C.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774706122.48
129 rdf:type schema:Person
130 sg:pub.10.1038/26439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000477855
131 https://doi.org/10.1038/26439
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0031-9163(62)91369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017917
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.478766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068045
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.40.2254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060551594
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.49.1327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569880
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.104.157002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498036
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.69.1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805228
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.72.2263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808768
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.91.167401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827402
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.99.127003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023777949
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/revmodphys.36.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838276
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1197294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041576847
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.279.5354.1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559676
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.279.5354.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559677
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.283.5398.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563694
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.288.5465.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569222
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1364/josab.25.0000b6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065172267
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1364/ol.26.001292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219899
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
168 schema:name Department of Advanced Materials Science, University of Tokyo, Tokyo, Japan
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.474688.1 schema:alternateName RIKEN Advanced Science Institute
171 schema:name Department of Advanced Materials Science, University of Tokyo, Tokyo, Japan
172 RIKEN Advanced Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
175 schema:name Department of Physics, Clarendon Laboratory, University of Oxford, UK
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
178 schema:name Department of Physics, Clarendon Laboratory, University of Oxford, UK
179 Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, Germany
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...