Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Jingle Liu, Jianming Dai, See Leang Chin, X.-C. Zhang

ABSTRACT

Terahertz wave sensing and imaging have received a great deal of attention because of their significant scientific and technological potential in multidisciplinary fields1,2,3. However, owing to the challenge of dealing with high ambient moisture absorption, the development of remote open-air broadband terahertz spectroscopy is lagging behind the urgent need for the technology that exists in homeland security and the fields of astronomy and environmental monitoring3,4. The requirement for on-site bias or forward collection of the optical signal in conventional terahertz detection techniques has inevitably prohibited their use in remote sensing5,6,7. We introduce an ‘all-optical’ technique of broadband terahertz wave detection by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma interacting with terahertz waves. Owing to the high atmospheric transparency and omnidirectional emission pattern of the fluorescence, this technique can be used to measure terahertz pulses at standoff distances with minimal water vapour absorption and unlimited directionality for optical signal collection. We demonstrate coherent terahertz wave detection at a distance of 10 m. More... »

PAGES

627

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2010.165

DOI

http://dx.doi.org/10.1038/nphoton.2010.165

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052811940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingle", 
        "id": "sg:person.013216647523.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216647523.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Jianming", 
        "id": "sg:person.014426131637.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426131637.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Laval", 
          "id": "https://www.grid.ac/institutes/grid.23856.3a", 
          "name": [
            "Department of Physics, Center for Optics, Photonics and Laser, Laval University, Quebec City, Quebec, G1V 0A6, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chin", 
        "givenName": "See Leang", 
        "id": "sg:person.01052751666.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052751666.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X.-C.", 
        "id": "sg:person.0576753370.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576753370.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-4075/41/22/225601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001204336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008159552", 
          "https://doi.org/10.1038/nphys286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008159552", 
          "https://doi.org/10.1038/nphys286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010034031", 
          "https://doi.org/10.1038/nphoton.2007.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/20/7/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013555642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/20/7/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013555642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015197377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/29/15/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031256500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/29/23/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036114557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037882877", 
          "https://doi.org/10.1038/nphoton.2008.153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931419", 
          "https://doi.org/10.1038/nmat708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931419", 
          "https://doi.org/10.1038/nmat708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.101901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057649478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057677520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2734374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3047046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057898512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3068501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057908304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.093001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.093001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.155004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.155004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.023902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.023902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.235002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.235002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.40.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.40.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.806580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2010.2047007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061336114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.14.001128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065212374"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Terahertz wave sensing and imaging have received a great deal of attention because of their significant scientific and technological potential in multidisciplinary fields1,2,3. However, owing to the challenge of dealing with high ambient moisture absorption, the development of remote open-air broadband terahertz spectroscopy is lagging behind the urgent need for the technology that exists in homeland security and the fields of astronomy and environmental monitoring3,4. The requirement for on-site bias or forward collection of the optical signal in conventional terahertz detection techniques has inevitably prohibited their use in remote sensing5,6,7. We introduce an \u2018all-optical\u2019 technique of broadband terahertz wave detection by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma interacting with terahertz waves. Owing to the high atmospheric transparency and omnidirectional emission pattern of the fluorescence, this technique can be used to measure terahertz pulses at standoff distances with minimal water vapour absorption and unlimited directionality for optical signal collection. We demonstrate coherent terahertz wave detection at a distance of 10 m.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2010.165", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases", 
    "pagination": "627", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb8f4dda91edee14eb637e146eef8f89911626c14a7d17d7ef83490c6613fb76"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2010.165"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052811940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2010.165", 
      "https://app.dimensions.ai/details/publication/pub.1052811940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113673_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2010.165"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.165'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.165'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.165'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.165'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2010.165 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb393ab8a244041bcb61b59b763d44d79
4 schema:citation sg:pub.10.1038/nmat708
5 sg:pub.10.1038/nphoton.2007.3
6 sg:pub.10.1038/nphoton.2008.153
7 sg:pub.10.1038/nphys286
8 https://doi.org/10.1016/j.chemphys.2009.05.001
9 https://doi.org/10.1063/1.101901
10 https://doi.org/10.1063/1.114909
11 https://doi.org/10.1063/1.2734374
12 https://doi.org/10.1063/1.3047046
13 https://doi.org/10.1063/1.3068501
14 https://doi.org/10.1088/0268-1242/20/7/018
15 https://doi.org/10.1088/0953-4075/29/15/016
16 https://doi.org/10.1088/0953-4075/29/23/015
17 https://doi.org/10.1088/0953-4075/41/22/225601
18 https://doi.org/10.1103/physrevlett.102.093001
19 https://doi.org/10.1103/physrevlett.102.155004
20 https://doi.org/10.1103/physrevlett.103.023001
21 https://doi.org/10.1103/physrevlett.103.023902
22 https://doi.org/10.1103/physrevlett.103.235002
23 https://doi.org/10.1103/physrevlett.62.1259
24 https://doi.org/10.1103/physrevlett.66.2601
25 https://doi.org/10.1103/physrevlett.73.1344
26 https://doi.org/10.1103/physrevlett.97.103903
27 https://doi.org/10.1103/revmodphys.40.399
28 https://doi.org/10.1109/3.806580
29 https://doi.org/10.1109/jstqe.2010.2047007
30 https://doi.org/10.1364/ol.14.001128
31 schema:datePublished 2010-09
32 schema:datePublishedReg 2010-09-01
33 schema:description Terahertz wave sensing and imaging have received a great deal of attention because of their significant scientific and technological potential in multidisciplinary fields1,2,3. However, owing to the challenge of dealing with high ambient moisture absorption, the development of remote open-air broadband terahertz spectroscopy is lagging behind the urgent need for the technology that exists in homeland security and the fields of astronomy and environmental monitoring3,4. The requirement for on-site bias or forward collection of the optical signal in conventional terahertz detection techniques has inevitably prohibited their use in remote sensing5,6,7. We introduce an ‘all-optical’ technique of broadband terahertz wave detection by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma interacting with terahertz waves. Owing to the high atmospheric transparency and omnidirectional emission pattern of the fluorescence, this technique can be used to measure terahertz pulses at standoff distances with minimal water vapour absorption and unlimited directionality for optical signal collection. We demonstrate coherent terahertz wave detection at a distance of 10 m.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N797212b1059442e09f26890f09af30b0
38 Neffda6e92b234eff9b87058c2dd996c0
39 sg:journal.1037430
40 schema:name Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases
41 schema:pagination 627
42 schema:productId N0ee1833975e1435da8ebfdab26407078
43 Nd78b3020954546049bd946bfd47e92a0
44 Nfc9eca6e1c474183b431092669b30bea
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052811940
46 https://doi.org/10.1038/nphoton.2010.165
47 schema:sdDatePublished 2019-04-11T10:37
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3b82292fbe4d428f9cb1b52732d197df
50 schema:url https://www.nature.com/articles/nphoton.2010.165
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N05efe4047363457b9a85e714a36f8054 rdf:first sg:person.0576753370.03
55 rdf:rest rdf:nil
56 N0ee1833975e1435da8ebfdab26407078 schema:name dimensions_id
57 schema:value pub.1052811940
58 rdf:type schema:PropertyValue
59 N3b82292fbe4d428f9cb1b52732d197df schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N56e9a2656f3e4413b92a26c3b1158f1d rdf:first sg:person.01052751666.15
62 rdf:rest N05efe4047363457b9a85e714a36f8054
63 N797212b1059442e09f26890f09af30b0 schema:volumeNumber 4
64 rdf:type schema:PublicationVolume
65 Nb393ab8a244041bcb61b59b763d44d79 rdf:first sg:person.013216647523.04
66 rdf:rest Nd115f4af41734c52a91f83233242f891
67 Nd115f4af41734c52a91f83233242f891 rdf:first sg:person.014426131637.28
68 rdf:rest N56e9a2656f3e4413b92a26c3b1158f1d
69 Nd78b3020954546049bd946bfd47e92a0 schema:name doi
70 schema:value 10.1038/nphoton.2010.165
71 rdf:type schema:PropertyValue
72 Neffda6e92b234eff9b87058c2dd996c0 schema:issueNumber 9
73 rdf:type schema:PublicationIssue
74 Nfc9eca6e1c474183b431092669b30bea schema:name readcube_id
75 schema:value fb8f4dda91edee14eb637e146eef8f89911626c14a7d17d7ef83490c6613fb76
76 rdf:type schema:PropertyValue
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
81 schema:name Other Physical Sciences
82 rdf:type schema:DefinedTerm
83 sg:journal.1037430 schema:issn 1749-4885
84 1749-4893
85 schema:name Nature Photonics
86 rdf:type schema:Periodical
87 sg:person.01052751666.15 schema:affiliation https://www.grid.ac/institutes/grid.23856.3a
88 schema:familyName Chin
89 schema:givenName See Leang
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052751666.15
91 rdf:type schema:Person
92 sg:person.013216647523.04 schema:affiliation https://www.grid.ac/institutes/grid.33647.35
93 schema:familyName Liu
94 schema:givenName Jingle
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216647523.04
96 rdf:type schema:Person
97 sg:person.014426131637.28 schema:affiliation https://www.grid.ac/institutes/grid.33647.35
98 schema:familyName Dai
99 schema:givenName Jianming
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426131637.28
101 rdf:type schema:Person
102 sg:person.0576753370.03 schema:affiliation https://www.grid.ac/institutes/grid.33647.35
103 schema:familyName Zhang
104 schema:givenName X.-C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576753370.03
106 rdf:type schema:Person
107 sg:pub.10.1038/nmat708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046931419
108 https://doi.org/10.1038/nmat708
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nphoton.2007.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010034031
111 https://doi.org/10.1038/nphoton.2007.3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nphoton.2008.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037882877
114 https://doi.org/10.1038/nphoton.2008.153
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nphys286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008159552
117 https://doi.org/10.1038/nphys286
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.chemphys.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015197377
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.101901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057649478
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.114909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057677520
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.2734374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861326
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.3047046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057898512
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.3068501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057908304
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0268-1242/20/7/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013555642
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0953-4075/29/15/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031256500
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0953-4075/29/23/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036114557
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0953-4075/41/22/225601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001204336
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.102.093001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754908
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.102.155004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755194
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.103.023001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755643
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.103.023902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755646
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.103.235002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756317
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.62.1259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798432
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.66.2601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802517
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.73.1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809545
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.103903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832799
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/revmodphys.40.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838604
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/3.806580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149744
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/jstqe.2010.2047007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336114
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1364/ol.14.001128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065212374
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.23856.3a schema:alternateName Université Laval
166 schema:name Department of Physics, Center for Optics, Photonics and Laser, Laval University, Quebec City, Quebec, G1V 0A6, Canada
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute
169 schema:name Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...