Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

Xiaoping Liu, Richard M. Osgood, Yurii A. Vlasov, William M. J. Green

ABSTRACT

All-optical signal processing is an approach used to dramatically decrease power consumption and speed up the performance of next-generation optical telecommunications networks1,2,3. Nonlinear optical effects such as four-wave mixing and parametric gain have been explored to realize all-optical functions in glass fibres4. An alternative approach is to use nanoscale engineering of silicon waveguides to enhance optical nonlinearities by up to five orders of magnitude5, enabling integrated chip-scale all-optical signal processing. Four-wave mixing within silicon nanophotonic waveguides has been used to demonstrate telecom-band (λ ≈ 1,550 nm) all-optical functions including wavelength conversion6,7,8,9, signal regeneration10 and tunable optical delay11. Despite these important advances, strong two-photon absorption12 of the telecom-band pump presents a fundamental obstacle, limiting parametric gain to values of several decibels13. Here, we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting broadband gain as high as 25.4 dB, using a mid-infrared pump near one-half the bandgap energy (E ≈ 0.55 eV, λ ≈ 2,200 nm), where parasitic two-photon absorption-related absorption vanishes12,14,15. This gain is high enough to compensate all insertion losses, resulting in 13-dB net off-chip amplification, using only an ultra-compact 4-mm silicon chip. Furthermore, engineering of higher-order waveguide dispersion16 can potentially enable mid-infrared-pumped silicon parametric oscillators17,18,19 and amplifiers for telecom-band optical signals. More... »

PAGES

557

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2010.119

DOI

http://dx.doi.org/10.1038/nphoton.2010.119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025001072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Electrical Engineering, Columbia University, 1300 S.W. Mudd Building, 500 W. 120th Street, New York, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiaoping", 
        "id": "sg:person.0651434651.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651434651.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Electrical Engineering, Columbia University, 1300 S.W. Mudd Building, 500 W. 120th Street, New York, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osgood", 
        "givenName": "Richard M.", 
        "id": "sg:person.016034030321.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034030321.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlasov", 
        "givenName": "Yurii A.", 
        "id": "sg:person.0705326460.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705326460.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "William M. J.", 
        "id": "sg:person.013540404412.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540404412.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/oe.14.001182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003034812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.007004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003183762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.007004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003183762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.11.002862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46629-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009412138", 
          "https://doi.org/10.1007/3-540-46629-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.001280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010610972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.015242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012875037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019948969", 
          "https://doi.org/10.1038/nphoton.2007.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.010596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021888163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200622062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023006544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200622062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023006544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366325", 
          "https://doi.org/10.1038/nphoton.2009.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366325", 
          "https://doi.org/10.1038/nphoton.2009.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040410666", 
          "https://doi.org/10.1038/nphoton.2009.236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040410666", 
          "https://doi.org/10.1038/nphoton.2009.236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.005435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048389647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.004629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049184409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.003853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049373775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.004341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049734877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.765459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052979721", 
          "https://doi.org/10.1038/nature06401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2737359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2991446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057890513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4258/8/10/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059140458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietele/e88-c.5.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059668264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.333744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2006.885774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061283856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2006.885340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5444.1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.009458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065185740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/cleo.2009.cfr4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098970838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/cleo.2009.cfr4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098970838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/fio.2009.pdpb3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098974294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "All-optical signal processing is an approach used to dramatically decrease power consumption and speed up the performance of next-generation optical telecommunications networks1,2,3. Nonlinear optical effects such as four-wave mixing and parametric gain have been explored to realize all-optical functions in glass fibres4. An alternative approach is to use nanoscale engineering of silicon waveguides to enhance optical nonlinearities by up to five orders of magnitude5, enabling integrated chip-scale all-optical signal processing. Four-wave mixing within silicon nanophotonic waveguides has been used to demonstrate telecom-band (\u03bb \u2248 1,550 nm) all-optical functions including wavelength conversion6,7,8,9, signal regeneration10 and tunable optical delay11. Despite these important advances, strong two-photon absorption12 of the telecom-band pump presents a fundamental obstacle, limiting parametric gain to values of several decibels13. Here, we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting broadband gain as high as 25.4 dB, using a mid-infrared pump near one-half the bandgap energy (E \u2248 0.55 eV, \u03bb \u2248 2,200 nm), where parasitic two-photon absorption-related absorption vanishes12,14,15. This gain is high enough to compensate all insertion losses, resulting in 13-dB net off-chip amplification, using only an ultra-compact 4-mm silicon chip. Furthermore, engineering of higher-order waveguide dispersion16 can potentially enable mid-infrared-pumped silicon parametric oscillators17,18,19 and amplifiers for telecom-band optical signals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2010.119", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides", 
    "pagination": "557", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "771a9450d346c0bb0146582c2aa3a65e6185c7ed5424e24b793eec88bfbf524e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2010.119"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025001072"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2010.119", 
      "https://app.dimensions.ai/details/publication/pub.1025001072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2010.119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2010.119'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2010.119 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N5a87dd5d74c44cc9947541fbacffbee7
4 schema:citation sg:pub.10.1007/3-540-46629-0_9
5 sg:pub.10.1038/nature04932
6 sg:pub.10.1038/nature06401
7 sg:pub.10.1038/nphoton.2007.249
8 sg:pub.10.1038/nphoton.2009.236
9 sg:pub.10.1038/nphoton.2009.259
10 https://doi.org/10.1002/pssa.200622062
11 https://doi.org/10.1063/1.2737359
12 https://doi.org/10.1063/1.2991446
13 https://doi.org/10.1088/1464-4258/8/10/004
14 https://doi.org/10.1093/ietele/e88-c.5.859
15 https://doi.org/10.1109/5.333744
16 https://doi.org/10.1109/jlt.2006.885774
17 https://doi.org/10.1109/jstqe.2006.885340
18 https://doi.org/10.1117/12.765459
19 https://doi.org/10.1126/science.286.5444.1523
20 https://doi.org/10.1364/cleo.2009.cfr4
21 https://doi.org/10.1364/fio.2009.pdpb3
22 https://doi.org/10.1364/oe.11.002862
23 https://doi.org/10.1364/oe.14.001182
24 https://doi.org/10.1364/oe.14.003853
25 https://doi.org/10.1364/oe.15.009458
26 https://doi.org/10.1364/oe.15.015242
27 https://doi.org/10.1364/oe.16.001280
28 https://doi.org/10.1364/oe.16.005435
29 https://doi.org/10.1364/oe.16.010596
30 https://doi.org/10.1364/oe.17.007004
31 https://doi.org/10.1364/opex.13.004341
32 https://doi.org/10.1364/opex.13.004629
33 schema:datePublished 2010-08
34 schema:datePublishedReg 2010-08-01
35 schema:description All-optical signal processing is an approach used to dramatically decrease power consumption and speed up the performance of next-generation optical telecommunications networks1,2,3. Nonlinear optical effects such as four-wave mixing and parametric gain have been explored to realize all-optical functions in glass fibres4. An alternative approach is to use nanoscale engineering of silicon waveguides to enhance optical nonlinearities by up to five orders of magnitude5, enabling integrated chip-scale all-optical signal processing. Four-wave mixing within silicon nanophotonic waveguides has been used to demonstrate telecom-band (λ ≈ 1,550 nm) all-optical functions including wavelength conversion6,7,8,9, signal regeneration10 and tunable optical delay11. Despite these important advances, strong two-photon absorption12 of the telecom-band pump presents a fundamental obstacle, limiting parametric gain to values of several decibels13. Here, we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting broadband gain as high as 25.4 dB, using a mid-infrared pump near one-half the bandgap energy (E ≈ 0.55 eV, λ ≈ 2,200 nm), where parasitic two-photon absorption-related absorption vanishes12,14,15. This gain is high enough to compensate all insertion losses, resulting in 13-dB net off-chip amplification, using only an ultra-compact 4-mm silicon chip. Furthermore, engineering of higher-order waveguide dispersion16 can potentially enable mid-infrared-pumped silicon parametric oscillators17,18,19 and amplifiers for telecom-band optical signals.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N11aaa1b4029047639228d10941e964b2
40 N6469d2b045694b07974ab84190d2b6ba
41 sg:journal.1037430
42 schema:name Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides
43 schema:pagination 557
44 schema:productId N6cc0f0dde1644090bdea1faa4679a140
45 Na34f317737d74f7391e49febc28e4178
46 Na7d7fd6edd7c4bf39e16965be7b008c6
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025001072
48 https://doi.org/10.1038/nphoton.2010.119
49 schema:sdDatePublished 2019-04-11T10:31
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ne7df0b123c0f4ccaa2a0f22a3b8512cb
52 schema:url https://www.nature.com/articles/nphoton.2010.119
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0a1ba99777654d2c9e741fb275b70624 rdf:first sg:person.013540404412.11
57 rdf:rest rdf:nil
58 N0d02eb6574144b09bfd9c774fd7d571e rdf:first sg:person.0705326460.83
59 rdf:rest N0a1ba99777654d2c9e741fb275b70624
60 N11aaa1b4029047639228d10941e964b2 schema:volumeNumber 4
61 rdf:type schema:PublicationVolume
62 N5a87dd5d74c44cc9947541fbacffbee7 rdf:first sg:person.0651434651.75
63 rdf:rest N8bca5ff2af9740e89ed0f73a71bed08e
64 N6469d2b045694b07974ab84190d2b6ba schema:issueNumber 8
65 rdf:type schema:PublicationIssue
66 N6cc0f0dde1644090bdea1faa4679a140 schema:name readcube_id
67 schema:value 771a9450d346c0bb0146582c2aa3a65e6185c7ed5424e24b793eec88bfbf524e
68 rdf:type schema:PropertyValue
69 N8bca5ff2af9740e89ed0f73a71bed08e rdf:first sg:person.016034030321.75
70 rdf:rest N0d02eb6574144b09bfd9c774fd7d571e
71 Na34f317737d74f7391e49febc28e4178 schema:name doi
72 schema:value 10.1038/nphoton.2010.119
73 rdf:type schema:PropertyValue
74 Na7d7fd6edd7c4bf39e16965be7b008c6 schema:name dimensions_id
75 schema:value pub.1025001072
76 rdf:type schema:PropertyValue
77 Ne7df0b123c0f4ccaa2a0f22a3b8512cb schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
83 schema:name Electrical and Electronic Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1037430 schema:issn 1749-4885
86 1749-4893
87 schema:name Nature Photonics
88 rdf:type schema:Periodical
89 sg:person.013540404412.11 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
90 schema:familyName Green
91 schema:givenName William M. J.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540404412.11
93 rdf:type schema:Person
94 sg:person.016034030321.75 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
95 schema:familyName Osgood
96 schema:givenName Richard M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034030321.75
98 rdf:type schema:Person
99 sg:person.0651434651.75 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
100 schema:familyName Liu
101 schema:givenName Xiaoping
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651434651.75
103 rdf:type schema:Person
104 sg:person.0705326460.83 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
105 schema:familyName Vlasov
106 schema:givenName Yurii A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705326460.83
108 rdf:type schema:Person
109 sg:pub.10.1007/3-540-46629-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412138
110 https://doi.org/10.1007/3-540-46629-0_9
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nature04932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048547410
113 https://doi.org/10.1038/nature04932
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature06401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052979721
116 https://doi.org/10.1038/nature06401
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nphoton.2007.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019948969
119 https://doi.org/10.1038/nphoton.2007.249
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nphoton.2009.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040410666
122 https://doi.org/10.1038/nphoton.2009.236
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nphoton.2009.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366325
125 https://doi.org/10.1038/nphoton.2009.259
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/pssa.200622062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023006544
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.2737359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861761
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.2991446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057890513
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/1464-4258/8/10/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059140458
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/ietele/e88-c.5.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059668264
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/5.333744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179273
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/jlt.2006.885774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061283856
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/jstqe.2006.885340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335325
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1117/12.765459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721913
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.286.5444.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567370
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/cleo.2009.cfr4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098970838
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1364/fio.2009.pdpb3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098974294
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1364/oe.11.002862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004052839
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/oe.14.001182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003034812
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/oe.14.003853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049373775
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/oe.15.009458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065185740
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1364/oe.15.015242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875037
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1364/oe.16.001280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010610972
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1364/oe.16.005435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048389647
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1364/oe.16.010596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021888163
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1364/oe.17.007004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003183762
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1364/opex.13.004341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049734877
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1364/opex.13.004629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049184409
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
174 schema:name Department of Electrical Engineering, Columbia University, 1300 S.W. Mudd Building, 500 W. 120th Street, New York, New York 10027, USA
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
177 schema:name IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...