Generation of molecular hot electroluminescence by resonant nanocavity plasmons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12-20

AUTHORS

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, J. G. Hou

ABSTRACT

Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v′) → S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs 6–10). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v′ > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission. More... »

PAGES

50-54

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2009.257

DOI

http://dx.doi.org/10.1038/nphoton.2009.257

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024342646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Z. C.", 
        "id": "sg:person.01146350260.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146350260.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "H. Y.", 
        "id": "sg:person.01132413110.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132413110.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Y.", 
        "id": "sg:person.012116630100.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116630100.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "C.", 
        "id": "sg:person.01046402311.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046402311.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "L. G.", 
        "id": "sg:person.0641661444.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641661444.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "R.", 
        "id": "sg:person.01162030366.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162030366.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "X.", 
        "id": "sg:person.01056361416.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056361416.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Y.", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "J. L.", 
        "id": "sg:person.011376413576.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376413576.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "J. G.", 
        "id": "sg:person.01124236561.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236561.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2008.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170945", 
          "https://doi.org/10.1038/nphoton.2008.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414281", 
          "https://doi.org/10.1038/nphys812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724631", 
          "https://doi.org/10.1038/nmeth818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010671700", 
          "https://doi.org/10.1038/35012545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12-20", 
    "datePublishedReg": "2009-12-20", 
    "description": "Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v\u2032)\u00a0\u2192\u00a0S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs\u00a06\u201310). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v\u2032\u00a0>\u00a00)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphoton.2009.257", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4924511", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "nanocavity plasmons", 
      "excited states", 
      "coherent optical sources", 
      "frequency of plasmons", 
      "development of plasmonic", 
      "scanning tunneling microscope", 
      "lowest excited states", 
      "singlet excited state", 
      "higher vibronic levels", 
      "optical source", 
      "tunable energy", 
      "light manipulation", 
      "tunneling microscope", 
      "molecular emission", 
      "Kasha's rule", 
      "radiative channels", 
      "resonance enhancement", 
      "radiative decay", 
      "vibronic levels", 
      "vibronic transitions", 
      "molecular emitters", 
      "plasmons", 
      "radiative properties", 
      "energy transfer", 
      "frequency tuning", 
      "electroluminescence", 
      "porphyrin molecules", 
      "emission", 
      "plasmonics", 
      "nanocavities", 
      "excitation", 
      "emitters", 
      "decay", 
      "microscope", 
      "energy", 
      "state", 
      "transition", 
      "tuning", 
      "molecules", 
      "fluorescence", 
      "field", 
      "generation", 
      "metals", 
      "enhancement", 
      "properties", 
      "functional molecules", 
      "frequency", 
      "source", 
      "channels", 
      "transfer", 
      "manipulation", 
      "means", 
      "key issues", 
      "rules", 
      "date", 
      "levels", 
      "development", 
      "control", 
      "issues", 
      "observations"
    ], 
    "name": "Generation of molecular hot electroluminescence by resonant nanocavity plasmons", 
    "pagination": "50-54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024342646"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2009.257"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2009.257", 
      "https://app.dimensions.ai/details/publication/pub.1024342646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphoton.2009.257"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      89 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2009.257 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na6b4636d179449418f1e159fad8f9204
4 schema:citation sg:pub.10.1038/35012545
5 sg:pub.10.1038/nature01937
6 sg:pub.10.1038/nmeth818
7 sg:pub.10.1038/nphoton.2008.82
8 sg:pub.10.1038/nphys812
9 schema:datePublished 2009-12-20
10 schema:datePublishedReg 2009-12-20
11 schema:description Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v′) → S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs 6–10). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v′ > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N6a7ca9ab530341d2a9b7706523729a0f
15 Nd50b76ba136649bead36ab0ca560cee6
16 sg:journal.1037430
17 schema:keywords Kasha's rule
18 channels
19 coherent optical sources
20 control
21 date
22 decay
23 development
24 development of plasmonic
25 electroluminescence
26 emission
27 emitters
28 energy
29 energy transfer
30 enhancement
31 excitation
32 excited states
33 field
34 fluorescence
35 frequency
36 frequency of plasmons
37 frequency tuning
38 functional molecules
39 generation
40 higher vibronic levels
41 issues
42 key issues
43 levels
44 light manipulation
45 lowest excited states
46 manipulation
47 means
48 metals
49 microscope
50 molecular emission
51 molecular emitters
52 molecules
53 nanocavities
54 nanocavity plasmons
55 observations
56 optical source
57 plasmonics
58 plasmons
59 porphyrin molecules
60 properties
61 radiative channels
62 radiative decay
63 radiative properties
64 resonance enhancement
65 rules
66 scanning tunneling microscope
67 singlet excited state
68 source
69 state
70 transfer
71 transition
72 tunable energy
73 tuning
74 tunneling microscope
75 vibronic levels
76 vibronic transitions
77 schema:name Generation of molecular hot electroluminescence by resonant nanocavity plasmons
78 schema:pagination 50-54
79 schema:productId N2a2b179ac7cf4b6980d10de94badc4cb
80 N93daacc5077346c892da3b8a41f65e94
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024342646
82 https://doi.org/10.1038/nphoton.2009.257
83 schema:sdDatePublished 2022-10-01T06:35
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N49c4f4f835644a04abc8af36f9f13427
86 schema:url https://doi.org/10.1038/nphoton.2009.257
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N2210a51da9674aabb0fe8d400aa41a1e rdf:first sg:person.01056361416.81
91 rdf:rest Ncdbabb79618341aeabd58c8fa97caa7f
92 N2a2b179ac7cf4b6980d10de94badc4cb schema:name dimensions_id
93 schema:value pub.1024342646
94 rdf:type schema:PropertyValue
95 N2d525a072b0b48f2bc9345d3b3ec677e rdf:first sg:person.012116630100.05
96 rdf:rest N81469a4121c9402ea1ac5c937a58cce1
97 N49c4f4f835644a04abc8af36f9f13427 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N512cd745a61a4a6d9e2d8a2e1aca3afc rdf:first Ne8b04fb66bde48eaa58989495c9bd62c
100 rdf:rest Ne7ab6304691e470cbf120fc90ed29ed3
101 N6a7ca9ab530341d2a9b7706523729a0f schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N81469a4121c9402ea1ac5c937a58cce1 rdf:first sg:person.01046402311.54
104 rdf:rest Nd1de2dd1f2de4c6d9c09fcaaaa0d35c9
105 N93daacc5077346c892da3b8a41f65e94 schema:name doi
106 schema:value 10.1038/nphoton.2009.257
107 rdf:type schema:PropertyValue
108 Na6b4636d179449418f1e159fad8f9204 rdf:first sg:person.01146350260.30
109 rdf:rest N512cd745a61a4a6d9e2d8a2e1aca3afc
110 Nae860c0c262e4625b27218477700e0f0 rdf:first sg:person.011376413576.98
111 rdf:rest Nf938156a539f4d2d9c61f19b234f500b
112 Naf52574268f94be68cecc72067ceb877 rdf:first sg:person.01162030366.64
113 rdf:rest N2210a51da9674aabb0fe8d400aa41a1e
114 Ncdbabb79618341aeabd58c8fa97caa7f rdf:first sg:person.01117171420.13
115 rdf:rest Nae860c0c262e4625b27218477700e0f0
116 Nd1de2dd1f2de4c6d9c09fcaaaa0d35c9 rdf:first sg:person.0641661444.12
117 rdf:rest Naf52574268f94be68cecc72067ceb877
118 Nd50b76ba136649bead36ab0ca560cee6 schema:volumeNumber 4
119 rdf:type schema:PublicationVolume
120 Ne7ab6304691e470cbf120fc90ed29ed3 rdf:first sg:person.01132413110.74
121 rdf:rest N2d525a072b0b48f2bc9345d3b3ec677e
122 Ne8b04fb66bde48eaa58989495c9bd62c schema:affiliation grid-institutes:grid.59053.3a
123 schema:familyName Zhang
124 schema:givenName X. L.
125 rdf:type schema:Person
126 Nf938156a539f4d2d9c61f19b234f500b rdf:first sg:person.01124236561.12
127 rdf:rest rdf:nil
128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
129 schema:name Physical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
132 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
133 rdf:type schema:DefinedTerm
134 sg:grant.4924511 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2009.257
135 rdf:type schema:MonetaryGrant
136 sg:journal.1037430 schema:issn 1749-4885
137 1749-4893
138 schema:name Nature Photonics
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01046402311.54 schema:affiliation grid-institutes:grid.59053.3a
142 schema:familyName Zhang
143 schema:givenName C.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046402311.54
145 rdf:type schema:Person
146 sg:person.01056361416.81 schema:affiliation grid-institutes:grid.59053.3a
147 schema:familyName Tao
148 schema:givenName X.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056361416.81
150 rdf:type schema:Person
151 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.59053.3a
152 schema:familyName Zhang
153 schema:givenName Y.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
155 rdf:type schema:Person
156 sg:person.01124236561.12 schema:affiliation grid-institutes:grid.59053.3a
157 schema:familyName Hou
158 schema:givenName J. G.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236561.12
160 rdf:type schema:Person
161 sg:person.01132413110.74 schema:affiliation grid-institutes:grid.59053.3a
162 schema:familyName Gao
163 schema:givenName H. Y.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132413110.74
165 rdf:type schema:Person
166 sg:person.011376413576.98 schema:affiliation grid-institutes:grid.59053.3a
167 schema:familyName Yang
168 schema:givenName J. L.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376413576.98
170 rdf:type schema:Person
171 sg:person.01146350260.30 schema:affiliation grid-institutes:grid.59053.3a
172 schema:familyName Dong
173 schema:givenName Z. C.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146350260.30
175 rdf:type schema:Person
176 sg:person.01162030366.64 schema:affiliation grid-institutes:grid.59053.3a
177 schema:familyName Zhang
178 schema:givenName R.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162030366.64
180 rdf:type schema:Person
181 sg:person.012116630100.05 schema:affiliation grid-institutes:grid.59053.3a
182 schema:familyName Luo
183 schema:givenName Y.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116630100.05
185 rdf:type schema:Person
186 sg:person.0641661444.12 schema:affiliation grid-institutes:grid.59053.3a
187 schema:familyName Chen
188 schema:givenName L. G.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641661444.12
190 rdf:type schema:Person
191 sg:pub.10.1038/35012545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010671700
192 https://doi.org/10.1038/35012545
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
195 https://doi.org/10.1038/nature01937
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nmeth818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724631
198 https://doi.org/10.1038/nmeth818
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nphoton.2008.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170945
201 https://doi.org/10.1038/nphoton.2008.82
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphys812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414281
204 https://doi.org/10.1038/nphys812
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
207 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...