Generation of molecular hot electroluminescence by resonant nanocavity plasmons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12-20

AUTHORS

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, J. G. Hou

ABSTRACT

Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v′) → S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs 6–10). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v′ > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission. More... »

PAGES

50-54

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2009.257

DOI

http://dx.doi.org/10.1038/nphoton.2009.257

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024342646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Z. C.", 
        "id": "sg:person.01146350260.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146350260.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "H. Y.", 
        "id": "sg:person.01132413110.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132413110.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Y.", 
        "id": "sg:person.012116630100.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116630100.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "C.", 
        "id": "sg:person.01046402311.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046402311.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "L. G.", 
        "id": "sg:person.0641661444.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641661444.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "R.", 
        "id": "sg:person.01162030366.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162030366.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "X.", 
        "id": "sg:person.01056361416.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056361416.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Y.", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "J. L.", 
        "id": "sg:person.011376413576.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376413576.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "J. G.", 
        "id": "sg:person.01124236561.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236561.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414281", 
          "https://doi.org/10.1038/nphys812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724631", 
          "https://doi.org/10.1038/nmeth818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170945", 
          "https://doi.org/10.1038/nphoton.2008.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010671700", 
          "https://doi.org/10.1038/35012545"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12-20", 
    "datePublishedReg": "2009-12-20", 
    "description": "Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v\u2032)\u00a0\u2192\u00a0S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs\u00a06\u201310). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v\u2032\u00a0>\u00a00)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphoton.2009.257", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4924511", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "nanocavity plasmons", 
      "excited states", 
      "coherent optical sources", 
      "frequency of plasmons", 
      "development of plasmonic", 
      "scanning tunneling microscope", 
      "lowest excited states", 
      "singlet excited state", 
      "higher vibronic levels", 
      "optical source", 
      "tunable energy", 
      "light manipulation", 
      "tunneling microscope", 
      "molecular emission", 
      "Kasha's rule", 
      "radiative channels", 
      "resonance enhancement", 
      "radiative decay", 
      "vibronic levels", 
      "vibronic transitions", 
      "molecular emitters", 
      "plasmons", 
      "radiative properties", 
      "energy transfer", 
      "frequency tuning", 
      "electroluminescence", 
      "porphyrin molecules", 
      "emission", 
      "plasmonics", 
      "nanocavities", 
      "excitation", 
      "emitters", 
      "decay", 
      "microscope", 
      "energy", 
      "state", 
      "transition", 
      "tuning", 
      "molecules", 
      "fluorescence", 
      "field", 
      "generation", 
      "metals", 
      "enhancement", 
      "properties", 
      "functional molecules", 
      "frequency", 
      "source", 
      "channels", 
      "transfer", 
      "manipulation", 
      "means", 
      "key issues", 
      "rules", 
      "date", 
      "levels", 
      "development", 
      "control", 
      "issues", 
      "observations"
    ], 
    "name": "Generation of molecular hot electroluminescence by resonant nanocavity plasmons", 
    "pagination": "50-54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024342646"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2009.257"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2009.257", 
      "https://app.dimensions.ai/details/publication/pub.1024342646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphoton.2009.257"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2009.257'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      89 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2009.257 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na01ddc5ea62b490c9171efa0fb33a996
4 schema:citation sg:pub.10.1038/35012545
5 sg:pub.10.1038/nature01937
6 sg:pub.10.1038/nmeth818
7 sg:pub.10.1038/nphoton.2008.82
8 sg:pub.10.1038/nphys812
9 schema:datePublished 2009-12-20
10 schema:datePublishedReg 2009-12-20
11 schema:description Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v′) → S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs 6–10). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v′ > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N2bf8639872184479b6840452af172f79
15 N705c9cb4d18446669beb7c61a1885197
16 sg:journal.1037430
17 schema:keywords Kasha's rule
18 channels
19 coherent optical sources
20 control
21 date
22 decay
23 development
24 development of plasmonic
25 electroluminescence
26 emission
27 emitters
28 energy
29 energy transfer
30 enhancement
31 excitation
32 excited states
33 field
34 fluorescence
35 frequency
36 frequency of plasmons
37 frequency tuning
38 functional molecules
39 generation
40 higher vibronic levels
41 issues
42 key issues
43 levels
44 light manipulation
45 lowest excited states
46 manipulation
47 means
48 metals
49 microscope
50 molecular emission
51 molecular emitters
52 molecules
53 nanocavities
54 nanocavity plasmons
55 observations
56 optical source
57 plasmonics
58 plasmons
59 porphyrin molecules
60 properties
61 radiative channels
62 radiative decay
63 radiative properties
64 resonance enhancement
65 rules
66 scanning tunneling microscope
67 singlet excited state
68 source
69 state
70 transfer
71 transition
72 tunable energy
73 tuning
74 tunneling microscope
75 vibronic levels
76 vibronic transitions
77 schema:name Generation of molecular hot electroluminescence by resonant nanocavity plasmons
78 schema:pagination 50-54
79 schema:productId N9039cec0945a490fbaa383a1ccedeb3d
80 Ne9ef3681d10e474ea2a9f4216cedb881
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024342646
82 https://doi.org/10.1038/nphoton.2009.257
83 schema:sdDatePublished 2022-12-01T06:28
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N7b1d5895fce345368133e40b447f3a6e
86 schema:url https://doi.org/10.1038/nphoton.2009.257
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N07182270b8e946c190445e10d8eaa4ad rdf:first sg:person.01124236561.12
91 rdf:rest rdf:nil
92 N0b39ed3b542a4b1bb34ecbe4bd59bb58 rdf:first sg:person.01117171420.13
93 rdf:rest N6cb6a6da5e8f44e88602df4acf899d9e
94 N0eb3b79fcaed4422ab93281e6ec730b0 rdf:first sg:person.01132413110.74
95 rdf:rest N965affcf954e4af18a1833156e99d6ea
96 N2bf8639872184479b6840452af172f79 schema:volumeNumber 4
97 rdf:type schema:PublicationVolume
98 N52aff02e05f34dc69bae2137b112329e rdf:first sg:person.01056361416.81
99 rdf:rest N0b39ed3b542a4b1bb34ecbe4bd59bb58
100 N6915247c0a7240b590fa38df87fa2e3a rdf:first sg:person.0641661444.12
101 rdf:rest Nd3962c18de2b4c6abe480443605e79fc
102 N6cb6a6da5e8f44e88602df4acf899d9e rdf:first sg:person.011376413576.98
103 rdf:rest N07182270b8e946c190445e10d8eaa4ad
104 N705c9cb4d18446669beb7c61a1885197 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N7b1d5895fce345368133e40b447f3a6e schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9039cec0945a490fbaa383a1ccedeb3d schema:name dimensions_id
109 schema:value pub.1024342646
110 rdf:type schema:PropertyValue
111 N965affcf954e4af18a1833156e99d6ea rdf:first sg:person.012116630100.05
112 rdf:rest Naa367350ccd54c1ebbe63d3e3fec11f6
113 Na01ddc5ea62b490c9171efa0fb33a996 rdf:first sg:person.01146350260.30
114 rdf:rest Nfa7748f12161454398de59db08d35762
115 Naa367350ccd54c1ebbe63d3e3fec11f6 rdf:first sg:person.01046402311.54
116 rdf:rest N6915247c0a7240b590fa38df87fa2e3a
117 Nd3962c18de2b4c6abe480443605e79fc rdf:first sg:person.01162030366.64
118 rdf:rest N52aff02e05f34dc69bae2137b112329e
119 Ne9ef3681d10e474ea2a9f4216cedb881 schema:name doi
120 schema:value 10.1038/nphoton.2009.257
121 rdf:type schema:PropertyValue
122 Nf39f183eb2f84853beadd7afb8af5b82 schema:affiliation grid-institutes:grid.59053.3a
123 schema:familyName Zhang
124 schema:givenName X. L.
125 rdf:type schema:Person
126 Nfa7748f12161454398de59db08d35762 rdf:first Nf39f183eb2f84853beadd7afb8af5b82
127 rdf:rest N0eb3b79fcaed4422ab93281e6ec730b0
128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
129 schema:name Physical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
132 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
133 rdf:type schema:DefinedTerm
134 sg:grant.4924511 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2009.257
135 rdf:type schema:MonetaryGrant
136 sg:journal.1037430 schema:issn 1749-4885
137 1749-4893
138 schema:name Nature Photonics
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01046402311.54 schema:affiliation grid-institutes:grid.59053.3a
142 schema:familyName Zhang
143 schema:givenName C.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046402311.54
145 rdf:type schema:Person
146 sg:person.01056361416.81 schema:affiliation grid-institutes:grid.59053.3a
147 schema:familyName Tao
148 schema:givenName X.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056361416.81
150 rdf:type schema:Person
151 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.59053.3a
152 schema:familyName Zhang
153 schema:givenName Y.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
155 rdf:type schema:Person
156 sg:person.01124236561.12 schema:affiliation grid-institutes:grid.59053.3a
157 schema:familyName Hou
158 schema:givenName J. G.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236561.12
160 rdf:type schema:Person
161 sg:person.01132413110.74 schema:affiliation grid-institutes:grid.59053.3a
162 schema:familyName Gao
163 schema:givenName H. Y.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132413110.74
165 rdf:type schema:Person
166 sg:person.011376413576.98 schema:affiliation grid-institutes:grid.59053.3a
167 schema:familyName Yang
168 schema:givenName J. L.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376413576.98
170 rdf:type schema:Person
171 sg:person.01146350260.30 schema:affiliation grid-institutes:grid.59053.3a
172 schema:familyName Dong
173 schema:givenName Z. C.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146350260.30
175 rdf:type schema:Person
176 sg:person.01162030366.64 schema:affiliation grid-institutes:grid.59053.3a
177 schema:familyName Zhang
178 schema:givenName R.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162030366.64
180 rdf:type schema:Person
181 sg:person.012116630100.05 schema:affiliation grid-institutes:grid.59053.3a
182 schema:familyName Luo
183 schema:givenName Y.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116630100.05
185 rdf:type schema:Person
186 sg:person.0641661444.12 schema:affiliation grid-institutes:grid.59053.3a
187 schema:familyName Chen
188 schema:givenName L. G.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641661444.12
190 rdf:type schema:Person
191 sg:pub.10.1038/35012545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010671700
192 https://doi.org/10.1038/35012545
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
195 https://doi.org/10.1038/nature01937
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nmeth818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724631
198 https://doi.org/10.1038/nmeth818
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nphoton.2008.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170945
201 https://doi.org/10.1038/nphoton.2008.82
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphys812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414281
204 https://doi.org/10.1038/nphys812
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
207 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...