Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, M. G. Bawendi

ABSTRACT

Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in light-emitting devices for display technologies and large-area planar lighting1, 2, 3, 4, 5, 6, 7, 8, 9, 10. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers, which have shown promise as efficient optical gain media11. To be a viable platform for colour-tunable electrically pumped lasers, the present-generation quantum-dot LEDs must be modified to withstand the extended, high-current-density operation needed to achieve population inversion. This requirement necessitates a quantum-dot LED design that incorporates robust charge transport layers. Here we report the use of sputtered, amorphous inorganic semiconductors as robust charge transport layers and demonstrate devices capable of operating at current densities exceeding 3.5 A cm- 2 with peak brightness of 1,950 Cd m- 2 and maximum external electroluminescence efficiency of nearly 0.1% , which represents a 100-fold improvement over previously reported structures8, 10. More... »

PAGES

247-250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2008.34

DOI

http://dx.doi.org/10.1038/nphoton.2008.34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027128132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Caruge", 
        "givenName": "J. M.", 
        "id": "sg:person.0716034671.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716034671.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Halpert", 
        "givenName": "J. E.", 
        "id": "sg:person.0647562444.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647562444.54"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "V.", 
        "id": "sg:person.0601120022.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601120022.32"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bulovi\u0107", 
        "givenName": "V.", 
        "id": "sg:person.01134033266.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134033266.30"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bawendi", 
        "givenName": "M. G.", 
        "id": "sg:person.015064765355.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064765355.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/370354a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018369978", 
          "https://doi.org/10.1038/370354a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2003.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024980207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2003.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024980207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2005.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029429639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200400468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034737300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200453728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036122820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5490.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040906628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0623208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048752430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0623208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048752430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052049135", 
          "https://doi.org/10.1038/nature01217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052049135", 
          "https://doi.org/10.1038/nature01217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035096m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035096m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja036683a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055834035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja036683a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055834035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050384x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050384x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052417e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052417e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1542940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057718581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.341066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057948111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.366452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057995005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.367369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057997411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.117401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.117401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.817634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.34.2440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063053716"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in light-emitting devices for display technologies and large-area planar lighting1, 2, 3, 4, 5, 6, 7, 8, 9, 10. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers, which have shown promise as efficient optical gain media11. To be a viable platform for colour-tunable electrically pumped lasers, the present-generation quantum-dot LEDs must be modified to withstand the extended, high-current-density operation needed to achieve population inversion. This requirement necessitates a quantum-dot LED design that incorporates robust charge transport layers. Here we report the use of sputtered, amorphous inorganic semiconductors as robust charge transport layers and demonstrate devices capable of operating at current densities exceeding 3.5 A cm- 2 with peak brightness of 1,950 Cd m- 2 and maximum external electroluminescence efficiency of nearly 0.1% , which represents a 100-fold improvement over previously reported structures8, 10.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2008.34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028306", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3057469", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers", 
    "pagination": "247-250", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "813a90ba99c3fab5e2d32d0116a03671eb3412775a9631712e44d1bdc19715e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2008.34"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027128132"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2008.34", 
      "https://app.dimensions.ai/details/publication/pub.1027128132"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphoton/journal/v2/n4/full/nphoton.2008.34.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.34'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2008.34 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd47311bc3a67400b9e94c18463ada966
4 schema:citation sg:pub.10.1038/370354a0
5 sg:pub.10.1038/nature01217
6 https://doi.org/10.1002/adfm.200400468
7 https://doi.org/10.1002/anie.200453728
8 https://doi.org/10.1016/j.chemphys.2005.05.036
9 https://doi.org/10.1016/j.orgel.2003.08.016
10 https://doi.org/10.1021/ja035096m
11 https://doi.org/10.1021/ja036683a
12 https://doi.org/10.1021/nl050384x
13 https://doi.org/10.1021/nl052417e
14 https://doi.org/10.1021/nl0623208
15 https://doi.org/10.1063/1.1542940
16 https://doi.org/10.1063/1.341066
17 https://doi.org/10.1063/1.366452
18 https://doi.org/10.1063/1.367369
19 https://doi.org/10.1103/physrevlett.89.117401
20 https://doi.org/10.1109/3.817634
21 https://doi.org/10.1126/science.287.5455.1011
22 https://doi.org/10.1126/science.290.5490.314
23 https://doi.org/10.1143/jjap.34.2440
24 schema:datePublished 2008-04
25 schema:datePublishedReg 2008-04-01
26 schema:description Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in light-emitting devices for display technologies and large-area planar lighting1, 2, 3, 4, 5, 6, 7, 8, 9, 10. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers, which have shown promise as efficient optical gain media11. To be a viable platform for colour-tunable electrically pumped lasers, the present-generation quantum-dot LEDs must be modified to withstand the extended, high-current-density operation needed to achieve population inversion. This requirement necessitates a quantum-dot LED design that incorporates robust charge transport layers. Here we report the use of sputtered, amorphous inorganic semiconductors as robust charge transport layers and demonstrate devices capable of operating at current densities exceeding 3.5 A cm- 2 with peak brightness of 1,950 Cd m- 2 and maximum external electroluminescence efficiency of nearly 0.1% , which represents a 100-fold improvement over previously reported structures8, 10.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nc10f6b7d10384c72906a9ab3dfccf19c
31 Nfe7977a86e5c458da7e92cd537333577
32 sg:journal.1037430
33 schema:name Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers
34 schema:pagination 247-250
35 schema:productId N5427f5bce3b34d4ca04880c8d92abd24
36 N96f72bffe2174595ae63a2b891f05a9a
37 Nb54c977fcc3a4a12be0adc1296ec76bf
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027128132
39 https://doi.org/10.1038/nphoton.2008.34
40 schema:sdDatePublished 2019-04-11T01:46
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Na4c30d5d348a4e7c86cd6c83a48a3721
43 schema:url http://www.nature.com/nphoton/journal/v2/n4/full/nphoton.2008.34.html
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1c1d71daf1954fc6ad824f6cf9200483 rdf:first sg:person.01134033266.30
48 rdf:rest Nbd980c9b640347f99292c7230160318a
49 N5427f5bce3b34d4ca04880c8d92abd24 schema:name dimensions_id
50 schema:value pub.1027128132
51 rdf:type schema:PropertyValue
52 N96f72bffe2174595ae63a2b891f05a9a schema:name readcube_id
53 schema:value 813a90ba99c3fab5e2d32d0116a03671eb3412775a9631712e44d1bdc19715e7
54 rdf:type schema:PropertyValue
55 N9eccb0ad545347bea621c1b0932ce0fd rdf:first sg:person.0601120022.32
56 rdf:rest N1c1d71daf1954fc6ad824f6cf9200483
57 Na4c30d5d348a4e7c86cd6c83a48a3721 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb54c977fcc3a4a12be0adc1296ec76bf schema:name doi
60 schema:value 10.1038/nphoton.2008.34
61 rdf:type schema:PropertyValue
62 Nbc589b0b5a684a6185625ef040eba187 rdf:first sg:person.0647562444.54
63 rdf:rest N9eccb0ad545347bea621c1b0932ce0fd
64 Nbd980c9b640347f99292c7230160318a rdf:first sg:person.015064765355.41
65 rdf:rest rdf:nil
66 Nc10f6b7d10384c72906a9ab3dfccf19c schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 Nd47311bc3a67400b9e94c18463ada966 rdf:first sg:person.0716034671.50
69 rdf:rest Nbc589b0b5a684a6185625ef040eba187
70 Nfe7977a86e5c458da7e92cd537333577 schema:volumeNumber 2
71 rdf:type schema:PublicationVolume
72 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
73 schema:name Chemical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Chemistry (incl. Structural)
77 rdf:type schema:DefinedTerm
78 sg:grant.3028306 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2008.34
79 rdf:type schema:MonetaryGrant
80 sg:grant.3057469 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2008.34
81 rdf:type schema:MonetaryGrant
82 sg:journal.1037430 schema:issn 1749-4885
83 1749-4893
84 schema:name Nature Photonics
85 rdf:type schema:Periodical
86 sg:person.01134033266.30 schema:familyName Bulović
87 schema:givenName V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134033266.30
89 rdf:type schema:Person
90 sg:person.015064765355.41 schema:familyName Bawendi
91 schema:givenName M. G.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064765355.41
93 rdf:type schema:Person
94 sg:person.0601120022.32 schema:familyName Wood
95 schema:givenName V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601120022.32
97 rdf:type schema:Person
98 sg:person.0647562444.54 schema:familyName Halpert
99 schema:givenName J. E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647562444.54
101 rdf:type schema:Person
102 sg:person.0716034671.50 schema:familyName Caruge
103 schema:givenName J. M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716034671.50
105 rdf:type schema:Person
106 sg:pub.10.1038/370354a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018369978
107 https://doi.org/10.1038/370354a0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature01217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052049135
110 https://doi.org/10.1038/nature01217
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/adfm.200400468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034737300
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/anie.200453728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036122820
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.chemphys.2005.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029429639
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.orgel.2003.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024980207
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/ja035096m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055833371
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ja036683a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055834035
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/nl050384x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216223
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/nl052417e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216567
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/nl0623208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752430
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.1542940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057718581
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.341066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057948111
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.366452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057995005
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.367369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057997411
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.89.117401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825314
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/3.817634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149834
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.287.5455.1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568259
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.290.5490.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040906628
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1143/jjap.34.2440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063053716
147 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...