Fast physical random bit generation with chaotic semiconductor lasers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Atsushi Uchida, Kazuya Amano, Masaki Inoue, Kunihito Hirano, Sunao Naito, Hiroyuki Someya, Isao Oowada, Takayuki Kurashige, Masaru Shiki, Shigeru Yoshimori, Kazuyuki Yoshimura, Peter Davis

ABSTRACT

Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences1, 2. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources. More... »

PAGES

728-732

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2008.227

DOI

http://dx.doi.org/10.1038/nphoton.2008.227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027962919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Uchida", 
        "givenName": "Atsushi", 
        "id": "sg:person.01314030203.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314030203.36"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Amano", 
        "givenName": "Kazuya", 
        "id": "sg:person.01200342716.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200342716.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Inoue", 
        "givenName": "Masaki", 
        "id": "sg:person.014133257607.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133257607.97"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hirano", 
        "givenName": "Kunihito", 
        "id": "sg:person.01246456116.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246456116.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Naito", 
        "givenName": "Sunao", 
        "id": "sg:person.07620530007.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620530007.40"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Someya", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01314571316.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314571316.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Oowada", 
        "givenName": "Isao", 
        "id": "sg:person.011334246045.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334246045.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kurashige", 
        "givenName": "Takayuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Shiki", 
        "givenName": "Masaru", 
        "type": "Person"
      }, 
      {
        "familyName": "Yoshimori", 
        "givenName": "Shigeru", 
        "id": "sg:person.012733360753.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733360753.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Yoshimura", 
        "givenName": "Kazuyuki", 
        "id": "sg:person.0640636375.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640636375.84"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Davis", 
        "givenName": "Peter", 
        "id": "sg:person.01126455453.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126455453.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.2961000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010252977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/042013a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031185010", 
          "https://doi.org/10.1038/042013a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/042013a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031185010", 
          "https://doi.org/10.1038/042013a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5354.1198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034136412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043218722", 
          "https://doi.org/10.1038/nature04275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043218722", 
          "https://doi.org/10.1038/nature04275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043218722", 
          "https://doi.org/10.1038/nature04275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043218722", 
          "https://doi.org/10.1038/nature04275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36400-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044415403", 
          "https://doi.org/10.1007/3-540-36400-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36400-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044415403", 
          "https://doi.org/10.1007/3-540-36400-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8858(86)90028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050091236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1507362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057714111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.586025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061236579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.915385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1980.1070479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061303241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2002.802045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061305946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2003.814366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061306122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2003.818281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061306175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2007.910965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061329901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2003.1190581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061533801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2004.839924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1074376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.243.4888.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062537224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icecs.2000.911499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094215505"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences1, 2. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2008.227", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Fast physical random bit generation with chaotic semiconductor lasers", 
    "pagination": "728-732", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8534b273296c21e2188bd6fdb7d217514e0d8e3e907ee4c47822f88b470cd3b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2008.227"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027962919"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2008.227", 
      "https://app.dimensions.ai/details/publication/pub.1027962919"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphoton/journal/v2/n12/full/nphoton.2008.227.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.227'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2008.227 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6145acff524a498b9aa2ee576ef73554
4 schema:citation sg:pub.10.1007/3-540-36400-5_31
5 sg:pub.10.1038/042013a0
6 sg:pub.10.1038/nature04275
7 https://doi.org/10.1016/0196-8858(86)90028-x
8 https://doi.org/10.1063/1.1507362
9 https://doi.org/10.1063/1.2961000
10 https://doi.org/10.1103/physreva.45.403
11 https://doi.org/10.1103/revmodphys.74.145
12 https://doi.org/10.1109/81.586025
13 https://doi.org/10.1109/81.915385
14 https://doi.org/10.1109/icecs.2000.911499
15 https://doi.org/10.1109/jqe.1980.1070479
16 https://doi.org/10.1109/jqe.2002.802045
17 https://doi.org/10.1109/jqe.2003.814366
18 https://doi.org/10.1109/jqe.2003.818281
19 https://doi.org/10.1109/jssc.2007.910965
20 https://doi.org/10.1109/tc.2003.1190581
21 https://doi.org/10.1109/tsp.2004.839924
22 https://doi.org/10.1126/science.1074376
23 https://doi.org/10.1126/science.243.4888.182
24 https://doi.org/10.1126/science.279.5354.1198
25 schema:datePublished 2008-12
26 schema:datePublishedReg 2008-12-01
27 schema:description Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences1, 2. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N6f8b51722e2343c893668c818bef7f2d
32 Nc0c3faec73d4455e8697255258465763
33 sg:journal.1037430
34 schema:name Fast physical random bit generation with chaotic semiconductor lasers
35 schema:pagination 728-732
36 schema:productId N1adba20f3d1a46b58e54ca0c5fe3195c
37 Nc0fba7a11a924f79829be5d33b891e84
38 Ndbf0bde376544260a1bb0fee41893d2e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027962919
40 https://doi.org/10.1038/nphoton.2008.227
41 schema:sdDatePublished 2019-04-10T21:24
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nd45685d3c6ec426c9563441677caf3de
44 schema:url http://www.nature.com/nphoton/journal/v2/n12/full/nphoton.2008.227.html
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N12ca4334e11c4100b3e443e14966be1a rdf:first sg:person.0640636375.84
49 rdf:rest Neb78796fb8584d96a0f63734145c1f92
50 N1adba20f3d1a46b58e54ca0c5fe3195c schema:name dimensions_id
51 schema:value pub.1027962919
52 rdf:type schema:PropertyValue
53 N1e17b6996c2f49108c223892478726bb rdf:first sg:person.012733360753.23
54 rdf:rest N12ca4334e11c4100b3e443e14966be1a
55 N2527b53c35794b9083c73e9171ed38b8 rdf:first sg:person.07620530007.40
56 rdf:rest N6c1c594317f243038742db358498e5d7
57 N470e8d07d8a047a6901b5e1520c3860d rdf:first sg:person.011334246045.55
58 rdf:rest N654f55ba01344c8888bf64fc5e501c20
59 N4ac778f894bc46fabef898306b383267 rdf:first N8562ee63b6e44042908e551fd7d5f492
60 rdf:rest N1e17b6996c2f49108c223892478726bb
61 N6145acff524a498b9aa2ee576ef73554 rdf:first sg:person.01314030203.36
62 rdf:rest N86f77a8ce4904d858c3c9eb097004871
63 N654f55ba01344c8888bf64fc5e501c20 rdf:first Nbfce1c54055b4b6196a9d19245dd5929
64 rdf:rest N4ac778f894bc46fabef898306b383267
65 N6c1c594317f243038742db358498e5d7 rdf:first sg:person.01314571316.04
66 rdf:rest N470e8d07d8a047a6901b5e1520c3860d
67 N6f8b51722e2343c893668c818bef7f2d schema:issueNumber 12
68 rdf:type schema:PublicationIssue
69 N8562ee63b6e44042908e551fd7d5f492 schema:familyName Shiki
70 schema:givenName Masaru
71 rdf:type schema:Person
72 N86f77a8ce4904d858c3c9eb097004871 rdf:first sg:person.01200342716.23
73 rdf:rest N99dc66a5deea4e11bc4f5b86805930bb
74 N99dc66a5deea4e11bc4f5b86805930bb rdf:first sg:person.014133257607.97
75 rdf:rest Nd6a8a4c94ddc45fe8471a685e86b823a
76 Nbfce1c54055b4b6196a9d19245dd5929 schema:familyName Kurashige
77 schema:givenName Takayuki
78 rdf:type schema:Person
79 Nc0c3faec73d4455e8697255258465763 schema:volumeNumber 2
80 rdf:type schema:PublicationVolume
81 Nc0fba7a11a924f79829be5d33b891e84 schema:name doi
82 schema:value 10.1038/nphoton.2008.227
83 rdf:type schema:PropertyValue
84 Nd45685d3c6ec426c9563441677caf3de schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nd6a8a4c94ddc45fe8471a685e86b823a rdf:first sg:person.01246456116.20
87 rdf:rest N2527b53c35794b9083c73e9171ed38b8
88 Ndbf0bde376544260a1bb0fee41893d2e schema:name readcube_id
89 schema:value 8534b273296c21e2188bd6fdb7d217514e0d8e3e907ee4c47822f88b470cd3b3
90 rdf:type schema:PropertyValue
91 Neb78796fb8584d96a0f63734145c1f92 rdf:first sg:person.01126455453.25
92 rdf:rest rdf:nil
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
97 schema:name Statistics
98 rdf:type schema:DefinedTerm
99 sg:journal.1037430 schema:issn 1749-4885
100 1749-4893
101 schema:name Nature Photonics
102 rdf:type schema:Periodical
103 sg:person.01126455453.25 schema:familyName Davis
104 schema:givenName Peter
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126455453.25
106 rdf:type schema:Person
107 sg:person.011334246045.55 schema:familyName Oowada
108 schema:givenName Isao
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334246045.55
110 rdf:type schema:Person
111 sg:person.01200342716.23 schema:familyName Amano
112 schema:givenName Kazuya
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200342716.23
114 rdf:type schema:Person
115 sg:person.01246456116.20 schema:familyName Hirano
116 schema:givenName Kunihito
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246456116.20
118 rdf:type schema:Person
119 sg:person.012733360753.23 schema:familyName Yoshimori
120 schema:givenName Shigeru
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733360753.23
122 rdf:type schema:Person
123 sg:person.01314030203.36 schema:familyName Uchida
124 schema:givenName Atsushi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314030203.36
126 rdf:type schema:Person
127 sg:person.01314571316.04 schema:familyName Someya
128 schema:givenName Hiroyuki
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314571316.04
130 rdf:type schema:Person
131 sg:person.014133257607.97 schema:familyName Inoue
132 schema:givenName Masaki
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133257607.97
134 rdf:type schema:Person
135 sg:person.0640636375.84 schema:familyName Yoshimura
136 schema:givenName Kazuyuki
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640636375.84
138 rdf:type schema:Person
139 sg:person.07620530007.40 schema:familyName Naito
140 schema:givenName Sunao
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620530007.40
142 rdf:type schema:Person
143 sg:pub.10.1007/3-540-36400-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044415403
144 https://doi.org/10.1007/3-540-36400-5_31
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/042013a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185010
147 https://doi.org/10.1038/042013a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature04275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043218722
150 https://doi.org/10.1038/nature04275
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0196-8858(86)90028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050091236
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1507362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057714111
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.2961000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010252977
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.45.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485073
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/revmodphys.74.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127668
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/81.586025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061236579
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/81.915385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237278
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icecs.2000.911499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094215505
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/jqe.1980.1070479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061303241
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/jqe.2002.802045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305946
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/jqe.2003.814366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061306122
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/jqe.2003.818281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061306175
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/jssc.2007.910965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061329901
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tc.2003.1190581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061533801
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tsp.2004.839924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799422
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1074376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446774
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.243.4888.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537224
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.279.5354.1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034136412
187 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...