Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10

AUTHORS

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez

ABSTRACT

Frequency mixing an ultrafast-pulse laser's fundamental and second-harmonic fields in semiconductors1, 2, atomic gases3, 4, and on metal surfaces5 generates a directional electrical current for which the magnitude and polarity depend upon the relative phase between these two fields1, 2, 3, 4, 5. As this current occurs on the timescale of the duration of the laser pulse, in the case of ultrafast lasers (<100 fs), this process can generate electromagnetic radiation at terahertz frequencies. Although such terahertz generation has been observed in semiconductors6 and air7, 8, 9, 10, 11, 12, 13, the terahertz generation mechanism is not well understood and the terahertz yield has not been optimized. Here, we demonstrate a coherent control scheme to optimize terahertz generation in gases, yielding a new source of high-energy (>5 J), super-broadband terahertz radiation (75 THz) as well as an enhanced accompanying third harmonic. We also present a unifying explanation for such extremely broad electromagnetic radiation generation. More... »

PAGES

605-609

Journal

TITLE

Nature Photonics

ISSUE

10

VOLUME

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2008.153

DOI

http://dx.doi.org/10.1038/nphoton.2008.153

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037882877


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kim", 
        "givenName": "K. Y.", 
        "id": "sg:person.016425267304.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425267304.48"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Taylor", 
        "givenName": "A. J.", 
        "id": "sg:person.01325363331.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325363331.84"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Glownia", 
        "givenName": "J. H.", 
        "id": "sg:person.01160154315.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160154315.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rodriguez", 
        "givenName": "G.", 
        "id": "sg:person.0650007155.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650007155.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008159552", 
          "https://doi.org/10.1038/nphys286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008159552", 
          "https://doi.org/10.1038/nphys286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/2/2/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058977057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.1934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.1934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r4271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r4271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.6735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.6735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.2212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.2212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.075005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.075005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.235002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.235002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2944.974229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1146764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.004577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065185037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.001210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.001120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.002805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223241"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "Frequency mixing an ultrafast-pulse laser's fundamental and second-harmonic fields in semiconductors1, 2, atomic gases3, 4, and on metal surfaces5 generates a directional electrical current for which the magnitude and polarity depend upon the relative phase between these two fields1, 2, 3, 4, 5. As this current occurs on the timescale of the duration of the laser pulse, in the case of ultrafast lasers (<100 fs), this process can generate electromagnetic radiation at terahertz frequencies. Although such terahertz generation has been observed in semiconductors6 and air7, 8, 9, 10, 11, 12, 13, the terahertz generation mechanism is not well understood and the terahertz yield has not been optimized. Here, we demonstrate a coherent control scheme to optimize terahertz generation in gases, yielding a new source of high-energy (>5 J), super-broadband terahertz radiation (75 THz) as well as an enhanced accompanying third harmonic. We also present a unifying explanation for such extremely broad electromagnetic radiation generation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2008.153", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Coherent control of terahertz supercontinuum generation in ultrafast laser\u2013gas interactions", 
    "pagination": "605-609", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4764d9d5e5c6ca8f41a896c8e2fece5ea248cbeed6b59d77371df16c56a99a0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2008.153"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037882877"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2008.153", 
      "https://app.dimensions.ai/details/publication/pub.1037882877"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphoton/journal/v2/n10/full/nphoton.2008.153.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.153'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.153'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.153'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2008.153'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2008.153 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N8cefe8d7713b4fc08228c05e5244a1fd
4 schema:citation sg:pub.10.1038/nphys286
5 https://doi.org/10.1063/1.125531
6 https://doi.org/10.1088/0026-1394/2/2/002
7 https://doi.org/10.1103/physreva.20.1934
8 https://doi.org/10.1103/physreva.58.r4271
9 https://doi.org/10.1103/physreve.54.6735
10 https://doi.org/10.1103/physrevlett.63.2212
11 https://doi.org/10.1103/physrevlett.69.2353
12 https://doi.org/10.1103/physrevlett.71.1994
13 https://doi.org/10.1103/physrevlett.73.1344
14 https://doi.org/10.1103/physrevlett.74.3596
15 https://doi.org/10.1103/physrevlett.78.306
16 https://doi.org/10.1103/physrevlett.82.1668
17 https://doi.org/10.1103/physrevlett.96.075005
18 https://doi.org/10.1103/physrevlett.97.103903
19 https://doi.org/10.1103/physrevlett.98.235002
20 https://doi.org/10.1109/2944.974229
21 https://doi.org/10.1126/science.1146764
22 https://doi.org/10.1364/oe.15.004577
23 https://doi.org/10.1364/ol.25.001210
24 https://doi.org/10.1364/ol.29.001120
25 https://doi.org/10.1364/ol.30.002805
26 schema:datePublished 2008-10
27 schema:datePublishedReg 2008-10-01
28 schema:description Frequency mixing an ultrafast-pulse laser's fundamental and second-harmonic fields in semiconductors1, 2, atomic gases3, 4, and on metal surfaces5 generates a directional electrical current for which the magnitude and polarity depend upon the relative phase between these two fields1, 2, 3, 4, 5. As this current occurs on the timescale of the duration of the laser pulse, in the case of ultrafast lasers (<100 fs), this process can generate electromagnetic radiation at terahertz frequencies. Although such terahertz generation has been observed in semiconductors6 and air7, 8, 9, 10, 11, 12, 13, the terahertz generation mechanism is not well understood and the terahertz yield has not been optimized. Here, we demonstrate a coherent control scheme to optimize terahertz generation in gases, yielding a new source of high-energy (>5 J), super-broadband terahertz radiation (75 THz) as well as an enhanced accompanying third harmonic. We also present a unifying explanation for such extremely broad electromagnetic radiation generation.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N14df0e81b1954017a258f938d62ede40
33 Nc63cbaf2cb28470c9a7def4989b10e5f
34 sg:journal.1037430
35 schema:name Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions
36 schema:pagination 605-609
37 schema:productId N34d4061fd0574866989d71bfe9f9fded
38 N56f868fe392649aaab51105a0cd73d00
39 N60c1b55413bb4708b19a984150e90124
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037882877
41 https://doi.org/10.1038/nphoton.2008.153
42 schema:sdDatePublished 2019-04-10T12:59
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N69fbdf1708cb4aca9b8fe17def367162
45 schema:url http://www.nature.com/nphoton/journal/v2/n10/full/nphoton.2008.153.html
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N14df0e81b1954017a258f938d62ede40 schema:issueNumber 10
50 rdf:type schema:PublicationIssue
51 N34d4061fd0574866989d71bfe9f9fded schema:name readcube_id
52 schema:value b4764d9d5e5c6ca8f41a896c8e2fece5ea248cbeed6b59d77371df16c56a99a0
53 rdf:type schema:PropertyValue
54 N56f868fe392649aaab51105a0cd73d00 schema:name dimensions_id
55 schema:value pub.1037882877
56 rdf:type schema:PropertyValue
57 N60c1b55413bb4708b19a984150e90124 schema:name doi
58 schema:value 10.1038/nphoton.2008.153
59 rdf:type schema:PropertyValue
60 N683a3a53cf014364b762e970548138da rdf:first sg:person.01325363331.84
61 rdf:rest Nc30ea998fc1741c2abad5631521572a7
62 N69fbdf1708cb4aca9b8fe17def367162 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N7a19060b4d47484f975b138e0ac7f6e5 rdf:first sg:person.0650007155.91
65 rdf:rest rdf:nil
66 N8cefe8d7713b4fc08228c05e5244a1fd rdf:first sg:person.016425267304.48
67 rdf:rest N683a3a53cf014364b762e970548138da
68 Nc30ea998fc1741c2abad5631521572a7 rdf:first sg:person.01160154315.31
69 rdf:rest N7a19060b4d47484f975b138e0ac7f6e5
70 Nc63cbaf2cb28470c9a7def4989b10e5f schema:volumeNumber 2
71 rdf:type schema:PublicationVolume
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
76 schema:name Other Physical Sciences
77 rdf:type schema:DefinedTerm
78 sg:journal.1037430 schema:issn 1749-4885
79 1749-4893
80 schema:name Nature Photonics
81 rdf:type schema:Periodical
82 sg:person.01160154315.31 schema:familyName Glownia
83 schema:givenName J. H.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160154315.31
85 rdf:type schema:Person
86 sg:person.01325363331.84 schema:familyName Taylor
87 schema:givenName A. J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325363331.84
89 rdf:type schema:Person
90 sg:person.016425267304.48 schema:familyName Kim
91 schema:givenName K. Y.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425267304.48
93 rdf:type schema:Person
94 sg:person.0650007155.91 schema:familyName Rodriguez
95 schema:givenName G.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650007155.91
97 rdf:type schema:Person
98 sg:pub.10.1038/nphys286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008159552
99 https://doi.org/10.1038/nphys286
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.125531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689646
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/0026-1394/2/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058977057
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreva.20.1934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468209
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.58.r4271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494482
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreve.54.6735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720194
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.63.2212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799671
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.69.2353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805481
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.71.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807615
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.73.1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809545
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.74.3596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810933
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.78.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815097
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.82.1668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818995
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.96.075005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831792
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.97.103903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832799
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.98.235002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834148
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/2944.974229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146096
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.1146764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456358
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1364/oe.15.004577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065185037
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1364/ol.25.001210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219336
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1364/ol.29.001120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221813
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1364/ol.30.002805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223241
142 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...