Amplified wavelength–time transformation for real-time spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

D. R. Solli, J. Chou, B. Jalali

ABSTRACT

Real-time spectroscopy provides invaluable information about the evolution of dynamical processes, especially non-repetitive phenomena. Unfortunately, the continuous acquisition of rapidly varying spectra represents an extremely difficult challenge. One method, wavelength–time mapping, chirps the spectrum so that it can be measured using a single-shot oscilloscope1, 2, 3, 4. Here, we demonstrate a method that overcomes a fundamental problem that has previously plagued wavelength–time spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. The present technique uses an optically amplified wavelength–time transformation to beat the dispersion-loss trade-off and facilitate high-resolution, broadband, real-time applications. We show that this distributed amplification process can even be pumped by broadband noise, generating a wide gain bandwidth using a single pump source. We apply these techniques to demonstrate real-time stimulated Raman spectroscopy. Amplified wavelength–time Raman spectroscopy creates new opportunities for the study of chemical and physical dynamics in real time. More... »

PAGES

48-51

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2007.253

DOI

http://dx.doi.org/10.1038/nphoton.2007.253

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002962288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Solli", 
        "givenName": "D. R.", 
        "id": "sg:person.0645734561.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645734561.30"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Chou", 
        "givenName": "J.", 
        "id": "sg:person.07505733543.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505733543.15"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jalali", 
        "givenName": "B.", 
        "id": "sg:person.0663324762.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663324762.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/oe.11.002862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004052839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-002-1044-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300734", 
          "https://doi.org/10.1007/s00340-002-1044-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46629-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009412138", 
          "https://doi.org/10.1007/3-540-46629-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.12.005269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015857674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.000519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026311798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2142087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027280228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051434741", 
          "https://doi.org/10.1038/nature03346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051434741", 
          "https://doi.org/10.1038/nature03346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp030147n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056052093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp030147n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056052093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19970663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056785328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19991116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056788864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.182.482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.182.482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.13259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.13259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.7.3685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060610323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.7.3685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060610323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2006.890422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061283973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1978.1069760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061302606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2002.1016358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lpt.2004.824997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061366620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1118379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.23.002479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.11.001731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.12.004437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065243142"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Real-time spectroscopy provides invaluable information about the evolution of dynamical processes, especially non-repetitive phenomena. Unfortunately, the continuous acquisition of rapidly varying spectra represents an extremely difficult challenge. One method, wavelength\u2013time mapping, chirps the spectrum so that it can be measured using a single-shot oscilloscope1, 2, 3, 4. Here, we demonstrate a method that overcomes a fundamental problem that has previously plagued wavelength\u2013time spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. The present technique uses an optically amplified wavelength\u2013time transformation to beat the dispersion-loss trade-off and facilitate high-resolution, broadband, real-time applications. We show that this distributed amplification process can even be pumped by broadband noise, generating a wide gain bandwidth using a single pump source. We apply these techniques to demonstrate real-time stimulated Raman spectroscopy. Amplified wavelength\u2013time Raman spectroscopy creates new opportunities for the study of chemical and physical dynamics in real time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2007.253", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Amplified wavelength\u2013time transformation for real-time spectroscopy", 
    "pagination": "48-51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e1bb1f0355551f06884262983a649bcd3ff3cb1022d346829b43b588d761ef4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2007.253"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002962288"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2007.253", 
      "https://app.dimensions.ai/details/publication/pub.1002962288"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphoton/journal/v2/n1/full/nphoton.2007.253.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.253'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.253'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.253'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.253'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2007.253 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N2e6c9c10d89f45f5a8266642dbd823c2
4 schema:citation sg:pub.10.1007/3-540-46629-0_9
5 sg:pub.10.1007/s00340-002-1044-z
6 sg:pub.10.1038/nature03346
7 https://doi.org/10.1021/jp030147n
8 https://doi.org/10.1049/el:19970663
9 https://doi.org/10.1049/el:19991116
10 https://doi.org/10.1063/1.1654637
11 https://doi.org/10.1063/1.2142087
12 https://doi.org/10.1103/physrev.155.712
13 https://doi.org/10.1103/physrev.182.482
14 https://doi.org/10.1103/physrevb.49.13259
15 https://doi.org/10.1103/physrevb.7.3685
16 https://doi.org/10.1103/physrevlett.17.1239
17 https://doi.org/10.1103/physrevlett.9.455
18 https://doi.org/10.1109/jlt.2006.890422
19 https://doi.org/10.1109/jqe.1978.1069760
20 https://doi.org/10.1109/jstqe.2002.1016358
21 https://doi.org/10.1109/lpt.2004.824997
22 https://doi.org/10.1126/science.1118379
23 https://doi.org/10.1364/josab.23.002479
24 https://doi.org/10.1364/oe.11.001731
25 https://doi.org/10.1364/oe.11.002862
26 https://doi.org/10.1364/opex.12.004437
27 https://doi.org/10.1364/opex.12.005269
28 https://doi.org/10.1364/opex.13.000519
29 schema:datePublished 2008-01
30 schema:datePublishedReg 2008-01-01
31 schema:description Real-time spectroscopy provides invaluable information about the evolution of dynamical processes, especially non-repetitive phenomena. Unfortunately, the continuous acquisition of rapidly varying spectra represents an extremely difficult challenge. One method, wavelength–time mapping, chirps the spectrum so that it can be measured using a single-shot oscilloscope1, 2, 3, 4. Here, we demonstrate a method that overcomes a fundamental problem that has previously plagued wavelength–time spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. The present technique uses an optically amplified wavelength–time transformation to beat the dispersion-loss trade-off and facilitate high-resolution, broadband, real-time applications. We show that this distributed amplification process can even be pumped by broadband noise, generating a wide gain bandwidth using a single pump source. We apply these techniques to demonstrate real-time stimulated Raman spectroscopy. Amplified wavelength–time Raman spectroscopy creates new opportunities for the study of chemical and physical dynamics in real time.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Nae39ebd684104248971adb47899476fd
36 Nd5ed1d9def6043c5813796fab7a80f01
37 sg:journal.1037430
38 schema:name Amplified wavelength–time transformation for real-time spectroscopy
39 schema:pagination 48-51
40 schema:productId N11a587a3f97343678357361430de5bd8
41 N5eed281e82084a52b729ecb85bb7dd80
42 Nc25677cf78bd4db0ac401843dc2325f0
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962288
44 https://doi.org/10.1038/nphoton.2007.253
45 schema:sdDatePublished 2019-04-10T15:38
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ncadddbe1426946ee9ac0658dd0a28397
48 schema:url http://www.nature.com/nphoton/journal/v2/n1/full/nphoton.2007.253.html
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N11a587a3f97343678357361430de5bd8 schema:name doi
53 schema:value 10.1038/nphoton.2007.253
54 rdf:type schema:PropertyValue
55 N2e6c9c10d89f45f5a8266642dbd823c2 rdf:first sg:person.0645734561.30
56 rdf:rest Na576b23c9db14e2ca02665d9667e512f
57 N5eed281e82084a52b729ecb85bb7dd80 schema:name dimensions_id
58 schema:value pub.1002962288
59 rdf:type schema:PropertyValue
60 Na049f70cac9742f4831d7bbef52f3777 rdf:first sg:person.0663324762.70
61 rdf:rest rdf:nil
62 Na576b23c9db14e2ca02665d9667e512f rdf:first sg:person.07505733543.15
63 rdf:rest Na049f70cac9742f4831d7bbef52f3777
64 Nae39ebd684104248971adb47899476fd schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 Nc25677cf78bd4db0ac401843dc2325f0 schema:name readcube_id
67 schema:value 0e1bb1f0355551f06884262983a649bcd3ff3cb1022d346829b43b588d761ef4
68 rdf:type schema:PropertyValue
69 Ncadddbe1426946ee9ac0658dd0a28397 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nd5ed1d9def6043c5813796fab7a80f01 schema:volumeNumber 2
72 rdf:type schema:PublicationVolume
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Physical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1037430 schema:issn 1749-4885
80 1749-4893
81 schema:name Nature Photonics
82 rdf:type schema:Periodical
83 sg:person.0645734561.30 schema:familyName Solli
84 schema:givenName D. R.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645734561.30
86 rdf:type schema:Person
87 sg:person.0663324762.70 schema:familyName Jalali
88 schema:givenName B.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663324762.70
90 rdf:type schema:Person
91 sg:person.07505733543.15 schema:familyName Chou
92 schema:givenName J.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505733543.15
94 rdf:type schema:Person
95 sg:pub.10.1007/3-540-46629-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412138
96 https://doi.org/10.1007/3-540-46629-0_9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00340-002-1044-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300734
99 https://doi.org/10.1007/s00340-002-1044-z
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nature03346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051434741
102 https://doi.org/10.1038/nature03346
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/jp030147n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056052093
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1049/el:19970663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056785328
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1049/el:19991116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056788864
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.1654637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732663
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.2142087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280228
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrev.155.712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434984
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrev.182.482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060441879
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.49.13259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569878
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.7.3685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060610323
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.17.1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769164
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.9.455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826043
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/jlt.2006.890422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061283973
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/jqe.1978.1069760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061302606
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/jstqe.2002.1016358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334544
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/lpt.2004.824997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061366620
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.1118379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452640
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1364/josab.23.002479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171819
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1364/oe.11.001731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182436
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1364/oe.11.002862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004052839
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1364/opex.12.004437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065243142
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1364/opex.12.005269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857674
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1364/opex.13.000519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026311798
147 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...