Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, R. P. Mirin

ABSTRACT

Detectors with the capability to directly measure the photon number of a pulse of light1, 2, 3 enable linear optics quantum computing4, affect the security of quantum communications5, and can be used to characterize6, 7, 8 and herald9 non-classical states of light. Here, we demonstrate the photon-number-resolving capabilities of a quantum-dot, optically gated, field-effect transistor that uses quantum dots as optically addressable floating gates in a GaAs/Al0.2Ga0.8As -doped field-effect transistor. When the active area of the detector is illuminated, photo-generated carriers trapped by quantum dots screen the gate field, causing a persistent change in the channel current that is proportional to the number of confined carriers. Using weak laser pulses, we show that discrete numbers of trapped carriers produce well resolved changes in the channel current. We demonstrate that for a mean photon number of 1.1, decision regions can be defined such that the field-effect transistor determines the number of detected photons with a probability of accuracy greater than 83%. More... »

PAGES

585-588

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2007.173

DOI

http://dx.doi.org/10.1038/nphoton.2007.173

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000327964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Gansen", 
        "givenName": "E. J.", 
        "id": "sg:person.013075705231.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075705231.34"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rowe", 
        "givenName": "M. A.", 
        "id": "sg:person.07634341331.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634341331.91"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Greene", 
        "givenName": "M. B.", 
        "id": "sg:person.07503757743.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503757743.25"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rosenberg", 
        "givenName": "D.", 
        "id": "sg:person.014746045545.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746045545.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Harvey", 
        "givenName": "T. E.", 
        "id": "sg:person.012220660253.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220660253.16"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Su", 
        "givenName": "M. Y.", 
        "id": "sg:person.012722660376.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722660376.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hadfield", 
        "givenName": "R. H.", 
        "id": "sg:person.01142336714.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142336714.78"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Nam", 
        "givenName": "S. W.", 
        "id": "sg:person.01357517022.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357517022.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Mirin", 
        "givenName": "R. P.", 
        "id": "sg:person.012424022765.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424022765.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.73.033814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006164232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.033814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006164232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008492203", 
          "https://doi.org/10.1038/35051009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008492203", 
          "https://doi.org/10.1038/35051009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.061803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012020241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.061803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012020241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.061803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012020241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.113602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.113602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047714332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047714332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050001066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050001066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19960293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056783392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1639936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057728867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2403907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057854966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2735281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.063817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.063817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2003.820917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2007.902843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.000691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223621"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "Detectors with the capability to directly measure the photon number of a pulse of light1, 2, 3 enable linear optics quantum computing4, affect the security of quantum communications5, and can be used to characterize6, 7, 8 and herald9 non-classical states of light. Here, we demonstrate the photon-number-resolving capabilities of a quantum-dot, optically gated, field-effect transistor that uses quantum dots as optically addressable floating gates in a GaAs/Al0.2Ga0.8As -doped field-effect transistor. When the active area of the detector is illuminated, photo-generated carriers trapped by quantum dots screen the gate field, causing a persistent change in the channel current that is proportional to the number of confined carriers. Using weak laser pulses, we show that discrete numbers of trapped carriers produce well resolved changes in the channel current. We demonstrate that for a mean photon number of 1.1, decision regions can be defined such that the field-effect transistor determines the number of detected photons with a probability of accuracy greater than 83%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2007.173", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor", 
    "pagination": "585-588", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "018f6a030307f575a60acb0e4e2e6ef6f025d65f1c55f3ebb255e13767c1d3a5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2007.173"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000327964"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2007.173", 
      "https://app.dimensions.ai/details/publication/pub.1000327964"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000466.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphoton/journal/v1/n10/full/nphoton.2007.173.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.173'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.173'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.173'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2007.173'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2007.173 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N55efb7c6ab334d7f842c2c3ced602e66
4 schema:citation sg:pub.10.1038/35051009
5 https://doi.org/10.1049/el:19960293
6 https://doi.org/10.1063/1.1639936
7 https://doi.org/10.1063/1.2403907
8 https://doi.org/10.1063/1.2735281
9 https://doi.org/10.1088/1367-2630/8/1/004
10 https://doi.org/10.1103/physreva.68.063817
11 https://doi.org/10.1103/physreva.71.061803
12 https://doi.org/10.1103/physreva.73.033814
13 https://doi.org/10.1103/physrevlett.85.1330
14 https://doi.org/10.1103/physrevlett.92.113602
15 https://doi.org/10.1109/jstqe.2003.820917
16 https://doi.org/10.1109/jstqe.2007.902843
17 https://doi.org/10.1364/ol.31.000691
18 schema:datePublished 2007-10
19 schema:datePublishedReg 2007-10-01
20 schema:description Detectors with the capability to directly measure the photon number of a pulse of light1, 2, 3 enable linear optics quantum computing4, affect the security of quantum communications5, and can be used to characterize6, 7, 8 and herald9 non-classical states of light. Here, we demonstrate the photon-number-resolving capabilities of a quantum-dot, optically gated, field-effect transistor that uses quantum dots as optically addressable floating gates in a GaAs/Al0.2Ga0.8As -doped field-effect transistor. When the active area of the detector is illuminated, photo-generated carriers trapped by quantum dots screen the gate field, causing a persistent change in the channel current that is proportional to the number of confined carriers. Using weak laser pulses, we show that discrete numbers of trapped carriers produce well resolved changes in the channel current. We demonstrate that for a mean photon number of 1.1, decision regions can be defined such that the field-effect transistor determines the number of detected photons with a probability of accuracy greater than 83%.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N09105f5def304d22acd768954ca6cfea
25 Na79702947b214c8a9bb037537e197bba
26 sg:journal.1037430
27 schema:name Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor
28 schema:pagination 585-588
29 schema:productId Na792e90443fb47cbae2c00fd1d01c6de
30 Ne1acd9b499274e538313cc698e356d32
31 Nfd48512b99a2400d9844a451f72de0ef
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000327964
33 https://doi.org/10.1038/nphoton.2007.173
34 schema:sdDatePublished 2019-04-10T14:51
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ne6a29f730a734ad69490666f88ef841a
37 schema:url http://www.nature.com/nphoton/journal/v1/n10/full/nphoton.2007.173.html
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N02b7123a57cd461bbd95a69dd5b82928 rdf:first sg:person.012220660253.16
42 rdf:rest N1be108b58c25412e99e19f733670c9a6
43 N09105f5def304d22acd768954ca6cfea schema:issueNumber 10
44 rdf:type schema:PublicationIssue
45 N0ec45001a5454adcb43e2e29bd5c6ffe rdf:first sg:person.014746045545.31
46 rdf:rest N02b7123a57cd461bbd95a69dd5b82928
47 N1249f918c4f14d85ab3a830f5beeabfa rdf:first sg:person.01357517022.19
48 rdf:rest N63c6b2cfc55b4d8ab9154d7b4f6309f0
49 N1be108b58c25412e99e19f733670c9a6 rdf:first sg:person.012722660376.03
50 rdf:rest N831eaad554254147b92d93102231d2df
51 N22cdba86707b4778bcf3fd91fd822349 rdf:first sg:person.07503757743.25
52 rdf:rest N0ec45001a5454adcb43e2e29bd5c6ffe
53 N3912ce0aaff24a23bf0bb669966c4d63 rdf:first sg:person.07634341331.91
54 rdf:rest N22cdba86707b4778bcf3fd91fd822349
55 N55efb7c6ab334d7f842c2c3ced602e66 rdf:first sg:person.013075705231.34
56 rdf:rest N3912ce0aaff24a23bf0bb669966c4d63
57 N63c6b2cfc55b4d8ab9154d7b4f6309f0 rdf:first sg:person.012424022765.18
58 rdf:rest rdf:nil
59 N831eaad554254147b92d93102231d2df rdf:first sg:person.01142336714.78
60 rdf:rest N1249f918c4f14d85ab3a830f5beeabfa
61 Na792e90443fb47cbae2c00fd1d01c6de schema:name doi
62 schema:value 10.1038/nphoton.2007.173
63 rdf:type schema:PropertyValue
64 Na79702947b214c8a9bb037537e197bba schema:volumeNumber 1
65 rdf:type schema:PublicationVolume
66 Ne1acd9b499274e538313cc698e356d32 schema:name readcube_id
67 schema:value 018f6a030307f575a60acb0e4e2e6ef6f025d65f1c55f3ebb255e13767c1d3a5
68 rdf:type schema:PropertyValue
69 Ne6a29f730a734ad69490666f88ef841a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nfd48512b99a2400d9844a451f72de0ef schema:name dimensions_id
72 schema:value pub.1000327964
73 rdf:type schema:PropertyValue
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
78 schema:name Optical Physics
79 rdf:type schema:DefinedTerm
80 sg:journal.1037430 schema:issn 1749-4885
81 1749-4893
82 schema:name Nature Photonics
83 rdf:type schema:Periodical
84 sg:person.01142336714.78 schema:familyName Hadfield
85 schema:givenName R. H.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142336714.78
87 rdf:type schema:Person
88 sg:person.012220660253.16 schema:familyName Harvey
89 schema:givenName T. E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220660253.16
91 rdf:type schema:Person
92 sg:person.012424022765.18 schema:familyName Mirin
93 schema:givenName R. P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424022765.18
95 rdf:type schema:Person
96 sg:person.012722660376.03 schema:familyName Su
97 schema:givenName M. Y.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722660376.03
99 rdf:type schema:Person
100 sg:person.013075705231.34 schema:familyName Gansen
101 schema:givenName E. J.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075705231.34
103 rdf:type schema:Person
104 sg:person.01357517022.19 schema:familyName Nam
105 schema:givenName S. W.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357517022.19
107 rdf:type schema:Person
108 sg:person.014746045545.31 schema:familyName Rosenberg
109 schema:givenName D.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746045545.31
111 rdf:type schema:Person
112 sg:person.07503757743.25 schema:familyName Greene
113 schema:givenName M. B.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503757743.25
115 rdf:type schema:Person
116 sg:person.07634341331.91 schema:familyName Rowe
117 schema:givenName M. A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634341331.91
119 rdf:type schema:Person
120 sg:pub.10.1038/35051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008492203
121 https://doi.org/10.1038/35051009
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1049/el:19960293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056783392
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1639936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057728867
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.2403907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057854966
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.2735281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861456
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1367-2630/8/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050001066
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreva.68.063817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060499638
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreva.71.061803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012020241
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreva.73.033814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006164232
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.85.1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047714332
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.92.113602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534059
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/jstqe.2003.820917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334809
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/jstqe.2007.902843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335448
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/ol.31.000691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223621
148 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...