Magnetic quantum phase transition in Cr-doped Bi2(SexTe1−x)3 driven by the Stark effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

Zuocheng Zhang, Xiao Feng, Jing Wang, Biao Lian, Jinsong Zhang, Cuizu Chang, Minghua Guo, Yunbo Ou, Yang Feng, Shou-Cheng Zhang, Ke He, Xucun Ma, Qi-Kun Xue, Yayu Wang

ABSTRACT

The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes-similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition. More... »

PAGES

953-957

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2017.149

DOI

http://dx.doi.org/10.1038/nnano.2017.149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091084480

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28785093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zuocheng", 
        "id": "sg:person.01150766232.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xiao", 
        "id": "sg:person.010434330776.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434330776.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China", 
            "Department of Physics, Stanford University, Stanford, California 94305\u20134045, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jing", 
        "id": "sg:person.013675147425.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675147425.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Physics, Stanford University, Stanford, California 94305\u20134045, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lian", 
        "givenName": "Biao", 
        "id": "sg:person.0726012250.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726012250.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jinsong", 
        "id": "sg:person.01034537632.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034537632.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Cuizu", 
        "id": "sg:person.0660332004.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660332004.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Minghua", 
        "id": "sg:person.01156770064.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156770064.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ou", 
        "givenName": "Yunbo", 
        "id": "sg:person.01112706305.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112706305.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Yang", 
        "id": "sg:person.0615725564.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615725564.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "Department of Physics, Stanford University, Stanford, California 94305\u20134045, USA", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shou-Cheng", 
        "id": "sg:person.01151454145.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151454145.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Ke", 
        "id": "sg:person.01245570004.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xucun", 
        "id": "sg:person.01157513204.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157513204.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Qi-Kun", 
        "id": "sg:person.01360601606.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yayu", 
        "id": "sg:person.0635640376.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006728196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006728196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485853", 
          "https://doi.org/10.1038/nphys2388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010871765", 
          "https://doi.org/10.1038/ncomms5915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.156603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015365555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.156603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015365555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021354862", 
          "https://doi.org/10.1038/nmat4204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277340", 
          "https://doi.org/10.1038/nmat2943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.036805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022601495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.036805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022601495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.187201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.187201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3268475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032112605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1119010109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035675636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898094", 
          "https://doi.org/10.1038/nphys1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037502472", 
          "https://doi.org/10.1038/nphys1689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037502472", 
          "https://doi.org/10.1038/nphys1689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295744", 
          "https://doi.org/10.1038/nphys3053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039972751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039972751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050515912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/4/043048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052162905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/4/043048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052162905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b03218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053520749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5043769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn4038145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.165104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.165104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1230905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467762"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes-similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2017.149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Magnetic quantum phase transition in Cr-doped Bi2(SexTe1\u2212x)3 driven by the Stark effect", 
    "pagination": "953-957", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c65d3ad6820fe20c1b34959575d4c8284746f565e6d61d4df92de81e6083794"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28785093"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2017.149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091084480"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2017.149", 
      "https://app.dimensions.ai/details/publication/pub.1091084480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29181_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v12/n10/full/nnano.2017.149.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2017.149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2017.149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2017.149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2017.149'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2017.149 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne7524bbdbce34231a55e8db2dfd1344d
4 schema:citation sg:pub.10.1038/ncomms5915
5 sg:pub.10.1038/nmat2943
6 sg:pub.10.1038/nmat4204
7 sg:pub.10.1038/nphys1270
8 sg:pub.10.1038/nphys1689
9 sg:pub.10.1038/nphys2388
10 sg:pub.10.1038/nphys3053
11 https://doi.org/10.1021/acs.nanolett.5b03218
12 https://doi.org/10.1021/acs.nanolett.6b02044
13 https://doi.org/10.1021/nl5043769
14 https://doi.org/10.1021/nn4038145
15 https://doi.org/10.1063/1.3268475
16 https://doi.org/10.1073/pnas.1119010109
17 https://doi.org/10.1088/1367-2630/12/4/043048
18 https://doi.org/10.1103/physrev.108.1394
19 https://doi.org/10.1103/physrevb.81.195203
20 https://doi.org/10.1103/physrevb.82.165104
21 https://doi.org/10.1103/physrevb.89.060506
22 https://doi.org/10.1103/physrevlett.102.156603
23 https://doi.org/10.1103/physrevlett.105.176602
24 https://doi.org/10.1103/physrevlett.113.137201
25 https://doi.org/10.1103/physrevlett.114.187201
26 https://doi.org/10.1103/physrevlett.115.036805
27 https://doi.org/10.1103/physrevlett.94.056804
28 https://doi.org/10.1103/revmodphys.86.187
29 https://doi.org/10.1126/science.1187485
30 https://doi.org/10.1126/science.1230905
31 https://doi.org/10.1126/science.1234414
32 https://doi.org/10.1126/science.aaa6486
33 schema:datePublished 2017-10
34 schema:datePublishedReg 2017-10-01
35 schema:description The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi<sub>2</sub>Te<sub>3</sub>, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi<sub>2</sub>(Se<sub>x</sub>Te<sub>1-x</sub>)<sub>3</sub>, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes-similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi<sub>2</sub>(Se<sub>x</sub>Te<sub>1-x</sub>)<sub>3</sub> with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N0530d26448b54091bbe89bf373ebf969
40 Na12fffcbfcaf417183032b016f3989c8
41 sg:journal.1037429
42 schema:name Magnetic quantum phase transition in Cr-doped Bi2(SexTe1−x)3 driven by the Stark effect
43 schema:pagination 953-957
44 schema:productId N01f00617f4d3467cb89ac0f8f600c114
45 N255c522a7999473f9694fc4a272104d8
46 N446eaca852864e998173990fafa1011f
47 Na03da716241a4ca9aca8c876241917b8
48 Na0967321c5ab450e8917b165e68dba44
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091084480
50 https://doi.org/10.1038/nnano.2017.149
51 schema:sdDatePublished 2019-04-11T11:50
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nb6e3865c9a394300b45ceedf1ef0f60e
54 schema:url http://www.nature.com/nnano/journal/v12/n10/full/nnano.2017.149.html
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N01f00617f4d3467cb89ac0f8f600c114 schema:name dimensions_id
59 schema:value pub.1091084480
60 rdf:type schema:PropertyValue
61 N0530d26448b54091bbe89bf373ebf969 schema:issueNumber 10
62 rdf:type schema:PublicationIssue
63 N08fa673798314d04836546a70d574717 rdf:first sg:person.0726012250.83
64 rdf:rest N908f8a16ac0349f7b9b5114b7b5289fd
65 N255c522a7999473f9694fc4a272104d8 schema:name pubmed_id
66 schema:value 28785093
67 rdf:type schema:PropertyValue
68 N29c3b406d344434a893994a3cecc24c5 rdf:first sg:person.0660332004.30
69 rdf:rest N4c85f761108c4b14ab4bb227616cb425
70 N36c54c7481f44941848158cafb2e2632 rdf:first sg:person.0615725564.39
71 rdf:rest Na5426ca2952a40b58c562486cafb6746
72 N43d75793eb70413eaee2c6d0a9806639 rdf:first sg:person.013675147425.45
73 rdf:rest N08fa673798314d04836546a70d574717
74 N446eaca852864e998173990fafa1011f schema:name readcube_id
75 schema:value 2c65d3ad6820fe20c1b34959575d4c8284746f565e6d61d4df92de81e6083794
76 rdf:type schema:PropertyValue
77 N48cf1de5d81740949db08b0b00266c40 rdf:first sg:person.0635640376.17
78 rdf:rest rdf:nil
79 N4c85f761108c4b14ab4bb227616cb425 rdf:first sg:person.01156770064.90
80 rdf:rest Nbcb2244fb4454d84b9e0016c95e2b885
81 N89288b77b1ed4b9fa51718ca6e2bfa67 rdf:first sg:person.010434330776.00
82 rdf:rest N43d75793eb70413eaee2c6d0a9806639
83 N908f8a16ac0349f7b9b5114b7b5289fd rdf:first sg:person.01034537632.02
84 rdf:rest N29c3b406d344434a893994a3cecc24c5
85 N9d2ad44eb9364de4a196e5bde2d4c222 rdf:first sg:person.01360601606.21
86 rdf:rest N48cf1de5d81740949db08b0b00266c40
87 Na03da716241a4ca9aca8c876241917b8 schema:name doi
88 schema:value 10.1038/nnano.2017.149
89 rdf:type schema:PropertyValue
90 Na0967321c5ab450e8917b165e68dba44 schema:name nlm_unique_id
91 schema:value 101283273
92 rdf:type schema:PropertyValue
93 Na12fffcbfcaf417183032b016f3989c8 schema:volumeNumber 12
94 rdf:type schema:PublicationVolume
95 Na5426ca2952a40b58c562486cafb6746 rdf:first sg:person.01151454145.13
96 rdf:rest Ndb00855fbae747598aa2d4de5b2155c8
97 Nb6e3865c9a394300b45ceedf1ef0f60e schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nbcb2244fb4454d84b9e0016c95e2b885 rdf:first sg:person.01112706305.49
100 rdf:rest N36c54c7481f44941848158cafb2e2632
101 Ndb00855fbae747598aa2d4de5b2155c8 rdf:first sg:person.01245570004.12
102 rdf:rest Nf5959e2410ce479884023fe96d54eb9d
103 Ne7524bbdbce34231a55e8db2dfd1344d rdf:first sg:person.01150766232.30
104 rdf:rest N89288b77b1ed4b9fa51718ca6e2bfa67
105 Nf5959e2410ce479884023fe96d54eb9d rdf:first sg:person.01157513204.55
106 rdf:rest N9d2ad44eb9364de4a196e5bde2d4c222
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1037429 schema:issn 1748-3387
114 1748-3395
115 schema:name Nature Nanotechnology
116 rdf:type schema:Periodical
117 sg:person.01034537632.02 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
118 schema:familyName Zhang
119 schema:givenName Jinsong
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034537632.02
121 rdf:type schema:Person
122 sg:person.010434330776.00 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
123 schema:familyName Feng
124 schema:givenName Xiao
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434330776.00
126 rdf:type schema:Person
127 sg:person.01112706305.49 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
128 schema:familyName Ou
129 schema:givenName Yunbo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112706305.49
131 rdf:type schema:Person
132 sg:person.01150766232.30 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
133 schema:familyName Zhang
134 schema:givenName Zuocheng
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30
136 rdf:type schema:Person
137 sg:person.01151454145.13 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
138 schema:familyName Zhang
139 schema:givenName Shou-Cheng
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151454145.13
141 rdf:type schema:Person
142 sg:person.01156770064.90 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
143 schema:familyName Guo
144 schema:givenName Minghua
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156770064.90
146 rdf:type schema:Person
147 sg:person.01157513204.55 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
148 schema:familyName Ma
149 schema:givenName Xucun
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157513204.55
151 rdf:type schema:Person
152 sg:person.01245570004.12 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
153 schema:familyName He
154 schema:givenName Ke
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12
156 rdf:type schema:Person
157 sg:person.01360601606.21 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
158 schema:familyName Xue
159 schema:givenName Qi-Kun
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21
161 rdf:type schema:Person
162 sg:person.013675147425.45 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
163 schema:familyName Wang
164 schema:givenName Jing
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675147425.45
166 rdf:type schema:Person
167 sg:person.0615725564.39 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
168 schema:familyName Feng
169 schema:givenName Yang
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615725564.39
171 rdf:type schema:Person
172 sg:person.0635640376.17 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
173 schema:familyName Wang
174 schema:givenName Yayu
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17
176 rdf:type schema:Person
177 sg:person.0660332004.30 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
178 schema:familyName Chang
179 schema:givenName Cuizu
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660332004.30
181 rdf:type schema:Person
182 sg:person.0726012250.83 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
183 schema:familyName Lian
184 schema:givenName Biao
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726012250.83
186 rdf:type schema:Person
187 sg:pub.10.1038/ncomms5915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010871765
188 https://doi.org/10.1038/ncomms5915
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nmat2943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277340
191 https://doi.org/10.1038/nmat2943
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nmat4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021354862
194 https://doi.org/10.1038/nmat4204
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nphys1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
197 https://doi.org/10.1038/nphys1270
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nphys1689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037502472
200 https://doi.org/10.1038/nphys1689
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nphys2388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485853
203 https://doi.org/10.1038/nphys2388
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphys3053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038295744
206 https://doi.org/10.1038/nphys3053
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/acs.nanolett.5b03218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053520749
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acs.nanolett.6b02044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121588
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/nl5043769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221126
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nn4038145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225524
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.3268475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032112605
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1073/pnas.1119010109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035675636
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1088/1367-2630/12/4/043048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052162905
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrev.108.1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419550
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.81.195203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006728196
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevb.82.165104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634099
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevb.89.060506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642850
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.102.156603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015365555
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.105.176602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000736621
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.113.137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037316799
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.114.187201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629243
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.115.036805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022601495
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.94.056804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829853
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/revmodphys.86.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039972751
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1187485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461610
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1230905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467762
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1234414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904305
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aaa6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050515912
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
253 schema:name State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
256 schema:name Department of Physics, Stanford University, Stanford, California 94305–4045, USA
257 State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
260 schema:name Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
261 Department of Physics, Stanford University, Stanford, California 94305–4045, USA
262 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...