Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

T. Scrace, Y. Tsai, B. Barman, L. Schweidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, P. Hawrylak

ABSTRACT

Materials often exhibit fundamentally new phenomena in reduced dimensions that potentially lead to novel applications. This is true for single-layer, two-dimensional semiconductor crystals of transition-metal dichalcogenides, MX2 (M = Mo, W and X = S, Se). They exhibit direct bandgaps with energies in the visible region at the two non-equivalent valleys in the Brillouin zone. This makes them suitable for optoelectronic applications that range from light-emitting diodes to light harvesting and light sensors, and to valleytronics. Here, we report the results of a magnetoluminescence study of WS2 single-layer crystals in which the strong spin-orbit interaction additionally locks the valley and spin degrees of freedom. The recombination of the negatively charged exciton in the presence of a two-dimensional electron gas (2DEG) is found to be circularly polarized at zero magnetic field despite being excited with unpolarized light, which indicates that the existence of a valley polarized 2DEG is caused by valley and spin locking and strong electron-electron interactions. More... »

PAGES

603-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2015.78

DOI

http://dx.doi.org/10.1038/nnano.2015.78

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009955229

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25961511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, SUNY, Buffalo, New York 14260, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scrace", 
        "givenName": "T.", 
        "id": "sg:person.01234352655.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234352655.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, SUNY, Buffalo, New York 14260, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Y.", 
        "id": "sg:person.014564555177.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564555177.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, SUNY, Buffalo, New York 14260, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barman", 
        "givenName": "B.", 
        "id": "sg:person.01350601255.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350601255.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, SUNY, Buffalo, New York 14260, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schweidenback", 
        "givenName": "L.", 
        "id": "sg:person.014247203447.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247203447.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, SUNY, Buffalo, New York 14260, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrou", 
        "givenName": "A.", 
        "id": "sg:person.01113425450.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113425450.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Crete", 
          "id": "https://www.grid.ac/institutes/grid.8127.c", 
          "name": [
            "University of Crete, Heraklion GR-71003, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kioseoglou", 
        "givenName": "G.", 
        "id": "sg:person.0723767300.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723767300.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A 0R6, Ontario, Canada", 
            "Department of Physics, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozfidan", 
        "givenName": "I.", 
        "id": "sg:person.010730000156.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730000156.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council Canada", 
          "id": "https://www.grid.ac/institutes/grid.24433.32", 
          "name": [
            "Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A 0R6, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korkusinski", 
        "givenName": "M.", 
        "id": "sg:person.01032241333.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032241333.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A 0R6, Ontario, Canada", 
            "Department of Physics, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hawrylak", 
        "givenName": "P.", 
        "id": "sg:person.01006541067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006541067.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.109.226403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001022162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.226403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001022162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl401544y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001983917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.081301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002323364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.081301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002323364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3636402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010864952", 
          "https://doi.org/10.1038/nphys2848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011363390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011363390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.14898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014246989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.14898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014246989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3026357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015077213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.245403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024151059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.245403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024151059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029771247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029818521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3043079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030573977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.116601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030902857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.116601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030902857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.256601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032491725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.256601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032491725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn305275h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034441910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043505245", 
          "https://doi.org/10.1038/ncomms2498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200303019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044601515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044965700", 
          "https://doi.org/10.1038/srep01755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4768299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.4780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.4780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.155304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.155304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "Materials often exhibit fundamentally new phenomena in reduced dimensions that potentially lead to novel applications. This is true for single-layer, two-dimensional semiconductor crystals of transition-metal dichalcogenides, MX2 (M\u2009=\u2009Mo, W and X\u2009=\u2009S, Se). They exhibit direct bandgaps with energies in the visible region at the two non-equivalent valleys in the Brillouin zone. This makes them suitable for optoelectronic applications that range from light-emitting diodes to light harvesting and light sensors, and to valleytronics. Here, we report the results of a magnetoluminescence study of WS2 single-layer crystals in which the strong spin-orbit interaction additionally locks the valley and spin degrees of freedom. The recombination of the negatively charged exciton in the presence of a two-dimensional electron gas (2DEG) is found to be circularly polarized at zero magnetic field despite being excited with unpolarized light, which indicates that the existence of a valley polarized 2DEG is caused by valley and spin locking and strong electron-electron interactions. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2015.78", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers", 
    "pagination": "603-607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f6d06e8e4055eff862205f273ec2adc9038893459c7e8bd05b3b15af99d25c6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25961511"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2015.78"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009955229"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2015.78", 
      "https://app.dimensions.ai/details/publication/pub.1009955229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v10/n7/full/nnano.2015.78.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2015.78'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2015.78'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2015.78'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2015.78'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2015.78 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N51d9372aadcf43ab96608144d06e4bce
4 schema:citation sg:pub.10.1038/ncomms1882
5 sg:pub.10.1038/ncomms2498
6 sg:pub.10.1038/nnano.2012.193
7 sg:pub.10.1038/nnano.2012.95
8 sg:pub.10.1038/nnano.2012.96
9 sg:pub.10.1038/nphys2848
10 sg:pub.10.1038/srep01755
11 https://doi.org/10.1002/pssb.200303019
12 https://doi.org/10.1016/j.ssc.2012.02.005
13 https://doi.org/10.1021/nl3026357
14 https://doi.org/10.1021/nl3043079
15 https://doi.org/10.1021/nl401544y
16 https://doi.org/10.1021/nl903868w
17 https://doi.org/10.1021/nn305275h
18 https://doi.org/10.1063/1.3636402
19 https://doi.org/10.1063/1.4768299
20 https://doi.org/10.1103/physrevb.44.3821
21 https://doi.org/10.1103/physrevb.61.4780
22 https://doi.org/10.1103/physrevb.62.14898
23 https://doi.org/10.1103/physrevb.78.155304
24 https://doi.org/10.1103/physrevb.86.081301
25 https://doi.org/10.1103/physrevb.88.245403
26 https://doi.org/10.1103/physrevlett.105.136805
27 https://doi.org/10.1103/physrevlett.109.226403
28 https://doi.org/10.1103/physrevlett.58.2130
29 https://doi.org/10.1103/physrevlett.87.216402
30 https://doi.org/10.1103/physrevlett.88.256601
31 https://doi.org/10.1103/physrevlett.92.116601
32 https://doi.org/10.1126/science.1250140
33 https://doi.org/10.1126/science.1251329
34 schema:datePublished 2015-07
35 schema:datePublishedReg 2015-07-01
36 schema:description Materials often exhibit fundamentally new phenomena in reduced dimensions that potentially lead to novel applications. This is true for single-layer, two-dimensional semiconductor crystals of transition-metal dichalcogenides, MX2 (M = Mo, W and X = S, Se). They exhibit direct bandgaps with energies in the visible region at the two non-equivalent valleys in the Brillouin zone. This makes them suitable for optoelectronic applications that range from light-emitting diodes to light harvesting and light sensors, and to valleytronics. Here, we report the results of a magnetoluminescence study of WS2 single-layer crystals in which the strong spin-orbit interaction additionally locks the valley and spin degrees of freedom. The recombination of the negatively charged exciton in the presence of a two-dimensional electron gas (2DEG) is found to be circularly polarized at zero magnetic field despite being excited with unpolarized light, which indicates that the existence of a valley polarized 2DEG is caused by valley and spin locking and strong electron-electron interactions.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N9a25cfc5976a452c9d56573e10641bf2
41 Na37f99b7eb05417790fee825cdf69e1a
42 sg:journal.1037429
43 schema:name Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers
44 schema:pagination 603-607
45 schema:productId N070dc72ef2444da3ae2a0b55e22e5bfb
46 N16acc5b701b846d6ad0de83a4b1d56b7
47 N7122d43530d5474e98210a1ad7e696f6
48 N7547517ba0144a87be516e5cd327ae09
49 Nc6d01cd555e14932983ebe4ecacfa4f1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009955229
51 https://doi.org/10.1038/nnano.2015.78
52 schema:sdDatePublished 2019-04-10T16:28
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0c9f3db66f8b44679088a2d94e2c2844
55 schema:url http://www.nature.com/nnano/journal/v10/n7/full/nnano.2015.78.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N070dc72ef2444da3ae2a0b55e22e5bfb schema:name doi
60 schema:value 10.1038/nnano.2015.78
61 rdf:type schema:PropertyValue
62 N0c9f3db66f8b44679088a2d94e2c2844 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N0d1441eab1ed452a8bdea4a7b6ef5126 rdf:first sg:person.0723767300.03
65 rdf:rest N37f3d13aa9b341529f27273e7966597b
66 N16acc5b701b846d6ad0de83a4b1d56b7 schema:name readcube_id
67 schema:value 2f6d06e8e4055eff862205f273ec2adc9038893459c7e8bd05b3b15af99d25c6
68 rdf:type schema:PropertyValue
69 N37f3d13aa9b341529f27273e7966597b rdf:first sg:person.010730000156.38
70 rdf:rest N665a62f6cf1445419f0be0740d321a53
71 N4b2050ed0a5b42669623990253cfbe53 rdf:first sg:person.014564555177.41
72 rdf:rest Ne0c5320a65b84045a5bef329d786be5e
73 N5195f4af508f48d3862afde4569b16dc rdf:first sg:person.01113425450.43
74 rdf:rest N0d1441eab1ed452a8bdea4a7b6ef5126
75 N51d9372aadcf43ab96608144d06e4bce rdf:first sg:person.01234352655.54
76 rdf:rest N4b2050ed0a5b42669623990253cfbe53
77 N665a62f6cf1445419f0be0740d321a53 rdf:first sg:person.01032241333.99
78 rdf:rest Nf9856ca07d1740dc8eb4152608dc60e5
79 N7122d43530d5474e98210a1ad7e696f6 schema:name dimensions_id
80 schema:value pub.1009955229
81 rdf:type schema:PropertyValue
82 N7547517ba0144a87be516e5cd327ae09 schema:name nlm_unique_id
83 schema:value 101283273
84 rdf:type schema:PropertyValue
85 N9a25cfc5976a452c9d56573e10641bf2 schema:issueNumber 7
86 rdf:type schema:PublicationIssue
87 Na37f99b7eb05417790fee825cdf69e1a schema:volumeNumber 10
88 rdf:type schema:PublicationVolume
89 Nc6d01cd555e14932983ebe4ecacfa4f1 schema:name pubmed_id
90 schema:value 25961511
91 rdf:type schema:PropertyValue
92 Ne0c5320a65b84045a5bef329d786be5e rdf:first sg:person.01350601255.44
93 rdf:rest Nf5a69cd753e44e7c9d29789d57b04f27
94 Nf5a69cd753e44e7c9d29789d57b04f27 rdf:first sg:person.014247203447.31
95 rdf:rest N5195f4af508f48d3862afde4569b16dc
96 Nf9856ca07d1740dc8eb4152608dc60e5 rdf:first sg:person.01006541067.95
97 rdf:rest rdf:nil
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1037429 schema:issn 1748-3387
105 1748-3395
106 schema:name Nature Nanotechnology
107 rdf:type schema:Periodical
108 sg:person.01006541067.95 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
109 schema:familyName Hawrylak
110 schema:givenName P.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006541067.95
112 rdf:type schema:Person
113 sg:person.01032241333.99 schema:affiliation https://www.grid.ac/institutes/grid.24433.32
114 schema:familyName Korkusinski
115 schema:givenName M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032241333.99
117 rdf:type schema:Person
118 sg:person.010730000156.38 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
119 schema:familyName Ozfidan
120 schema:givenName I.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730000156.38
122 rdf:type schema:Person
123 sg:person.01113425450.43 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
124 schema:familyName Petrou
125 schema:givenName A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113425450.43
127 rdf:type schema:Person
128 sg:person.01234352655.54 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
129 schema:familyName Scrace
130 schema:givenName T.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234352655.54
132 rdf:type schema:Person
133 sg:person.01350601255.44 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
134 schema:familyName Barman
135 schema:givenName B.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350601255.44
137 rdf:type schema:Person
138 sg:person.014247203447.31 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
139 schema:familyName Schweidenback
140 schema:givenName L.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247203447.31
142 rdf:type schema:Person
143 sg:person.014564555177.41 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
144 schema:familyName Tsai
145 schema:givenName Y.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564555177.41
147 rdf:type schema:Person
148 sg:person.0723767300.03 schema:affiliation https://www.grid.ac/institutes/grid.8127.c
149 schema:familyName Kioseoglou
150 schema:givenName G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723767300.03
152 rdf:type schema:Person
153 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
154 https://doi.org/10.1038/ncomms1882
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ncomms2498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505245
157 https://doi.org/10.1038/ncomms2498
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
160 https://doi.org/10.1038/nnano.2012.193
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
163 https://doi.org/10.1038/nnano.2012.95
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
166 https://doi.org/10.1038/nnano.2012.96
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nphys2848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010864952
169 https://doi.org/10.1038/nphys2848
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep01755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044965700
172 https://doi.org/10.1038/srep01755
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/pssb.200303019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044601515
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ssc.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029771247
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/nl3026357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015077213
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/nl3043079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030573977
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl401544y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001983917
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nn305275h schema:sameAs https://app.dimensions.ai/details/publication/pub.1034441910
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.3636402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552497
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.4768299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064022
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.44.3821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559406
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.61.4780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595967
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.62.14898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014246989
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.78.155304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626366
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.86.081301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002323364
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.88.245403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024151059
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.109.226403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001022162
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.58.2130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794986
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.87.216402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011363390
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.88.256601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032491725
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.92.116601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030902857
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1250140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074202
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1251329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029818521
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.24433.32 schema:alternateName National Research Council Canada
221 schema:name Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A 0R6, Ontario, Canada
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
224 schema:name University at Buffalo, SUNY, Buffalo, New York 14260, USA
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
227 schema:name Department of Physics, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
228 Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A 0R6, Ontario, Canada
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.8127.c schema:alternateName University of Crete
231 schema:name University of Crete, Heraklion GR-71003, Greece
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...