A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Nian Liu, Zhenda Lu, Jie Zhao, Matthew T. McDowell, Hyun-Wook Lee, Wenting Zhao, Yi Cui

ABSTRACT

Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)). More... »

PAGES

187-192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2014.6

DOI

http://dx.doi.org/10.1038/nnano.2014.6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003314836

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24531496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Nian", 
        "id": "sg:person.01143501366.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143501366.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Zhenda", 
        "id": "sg:person.01205155640.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jie", 
        "id": "sg:person.01132313302.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313302.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDowell", 
        "givenName": "Matthew T.", 
        "id": "sg:person.01302473566.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302473566.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyun-Wook", 
        "id": "sg:person.0640406341.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640406341.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Wenting", 
        "id": "sg:person.01001465154.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001465154.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SLAC National Accelerator Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.445003.6", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA", 
            "Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Yi", 
        "id": "sg:person.014552666540.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000095809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001490253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002365928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3014814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003283643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007405937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl400437f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cc41456f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014139438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021008593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023550264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp204653y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp204653y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.05.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl203817r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025654344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2752985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027502264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029037852", 
          "https://doi.org/10.1038/nmat3191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1388178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029100650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp42231j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031303018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm31286g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032531480", 
          "https://doi.org/10.1038/nnano.2007.411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn2017167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033336797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033649812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl902058c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040185393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl902058c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040185393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b705421c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045591950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201300844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048956654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050288514", 
          "https://doi.org/10.1038/nnano.2012.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(00)00431-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050291316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm051123r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052389197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm051123r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052389197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357993", 
          "https://doi.org/10.1038/nmat2725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357993", 
          "https://doi.org/10.1038/nmat2725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1201088109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3044508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1652421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063188368"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (\u223c300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270\u00a0mAh\u00a0cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7\u00a0mAh\u00a0cm(-2)). ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2014.6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes", 
    "pagination": "187-192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fca186cb0fd48a4606f6a68f27bc60b2d7ee1a0ef8b5f5b96a02d9978830a9c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24531496"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2014.6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003314836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2014.6", 
      "https://app.dimensions.ai/details/publication/pub.1003314836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v9/n3/full/nnano.2014.6.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2014.6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N581f5de38f4046b69a376da301ccf17e
4 schema:citation sg:pub.10.1038/451652a
5 sg:pub.10.1038/nmat1368
6 sg:pub.10.1038/nmat2725
7 sg:pub.10.1038/nmat3191
8 sg:pub.10.1038/nnano.2007.411
9 sg:pub.10.1038/nnano.2012.35
10 https://doi.org/10.1002/adma.201102421
11 https://doi.org/10.1002/adma.201300844
12 https://doi.org/10.1002/aenm.201200389
13 https://doi.org/10.1002/aenm.201200857
14 https://doi.org/10.1016/j.electacta.2010.05.072
15 https://doi.org/10.1016/j.jpowsour.2009.01.007
16 https://doi.org/10.1016/j.jpowsour.2010.02.021
17 https://doi.org/10.1016/j.nantod.2012.08.004
18 https://doi.org/10.1016/s0378-7753(00)00431-6
19 https://doi.org/10.1021/cm051123r
20 https://doi.org/10.1021/jp204653y
21 https://doi.org/10.1021/nl203817r
22 https://doi.org/10.1021/nl3014814
23 https://doi.org/10.1021/nl3044508
24 https://doi.org/10.1021/nl400437f
25 https://doi.org/10.1021/nl902058c
26 https://doi.org/10.1021/nn2017167
27 https://doi.org/10.1039/b705421c
28 https://doi.org/10.1039/c2cp42231j
29 https://doi.org/10.1039/c2jm31286g
30 https://doi.org/10.1039/c3cc41456f
31 https://doi.org/10.1073/pnas.1201088109
32 https://doi.org/10.1126/science.1195628
33 https://doi.org/10.1126/science.1222453
34 https://doi.org/10.1149/1.1388178
35 https://doi.org/10.1149/1.1652421
36 https://doi.org/10.1149/1.2752985
37 schema:datePublished 2014-03
38 schema:datePublishedReg 2014-03-01
39 schema:description Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)).
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nc4dd2f4828f34ad5a3427b09fa21ee39
44 Ncdb857dd035f4e739e0ee1db3b96382e
45 sg:journal.1037429
46 schema:name A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
47 schema:pagination 187-192
48 schema:productId N699215ba1da34fe68c60c8360dbb2615
49 N83952d53badc4bc2b0037bac949942b3
50 Na2286bc0285d455c9ef2c0610628f8db
51 Na386ae314c6e447495080e4613f56beb
52 Nb0cb5bab527744dfaeeb3b63b7d1ee47
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003314836
54 https://doi.org/10.1038/nnano.2014.6
55 schema:sdDatePublished 2019-04-11T00:54
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nae22afca2d274d70b4e4a33d14d4b78c
58 schema:url http://www.nature.com/nnano/journal/v9/n3/full/nnano.2014.6.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0c593be975744fe8957dca025898e157 rdf:first sg:person.01205155640.04
63 rdf:rest N4aa9f14c5dd54c4998c8b04d1c7960ec
64 N1dd0243dfed24655933e6dab4c09a027 rdf:first sg:person.0640406341.02
65 rdf:rest Nabebd3b35ac944b581fd5e6a72a7b167
66 N4aa9f14c5dd54c4998c8b04d1c7960ec rdf:first sg:person.01132313302.17
67 rdf:rest N6b23f63a57b448809f0cb54e7d47d7ad
68 N581f5de38f4046b69a376da301ccf17e rdf:first sg:person.01143501366.38
69 rdf:rest N0c593be975744fe8957dca025898e157
70 N699215ba1da34fe68c60c8360dbb2615 schema:name nlm_unique_id
71 schema:value 101283273
72 rdf:type schema:PropertyValue
73 N6b23f63a57b448809f0cb54e7d47d7ad rdf:first sg:person.01302473566.80
74 rdf:rest N1dd0243dfed24655933e6dab4c09a027
75 N71f9348da6f1444081a606029006d74b rdf:first sg:person.014552666540.04
76 rdf:rest rdf:nil
77 N83952d53badc4bc2b0037bac949942b3 schema:name readcube_id
78 schema:value 0fca186cb0fd48a4606f6a68f27bc60b2d7ee1a0ef8b5f5b96a02d9978830a9c
79 rdf:type schema:PropertyValue
80 Na2286bc0285d455c9ef2c0610628f8db schema:name pubmed_id
81 schema:value 24531496
82 rdf:type schema:PropertyValue
83 Na386ae314c6e447495080e4613f56beb schema:name doi
84 schema:value 10.1038/nnano.2014.6
85 rdf:type schema:PropertyValue
86 Nabebd3b35ac944b581fd5e6a72a7b167 rdf:first sg:person.01001465154.61
87 rdf:rest N71f9348da6f1444081a606029006d74b
88 Nae22afca2d274d70b4e4a33d14d4b78c schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nb0cb5bab527744dfaeeb3b63b7d1ee47 schema:name dimensions_id
91 schema:value pub.1003314836
92 rdf:type schema:PropertyValue
93 Nc4dd2f4828f34ad5a3427b09fa21ee39 schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 Ncdb857dd035f4e739e0ee1db3b96382e schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:journal.1037429 schema:issn 1748-3387
104 1748-3395
105 schema:name Nature Nanotechnology
106 rdf:type schema:Periodical
107 sg:person.01001465154.61 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
108 schema:familyName Zhao
109 schema:givenName Wenting
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001465154.61
111 rdf:type schema:Person
112 sg:person.01132313302.17 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
113 schema:familyName Zhao
114 schema:givenName Jie
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313302.17
116 rdf:type schema:Person
117 sg:person.01143501366.38 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
118 schema:familyName Liu
119 schema:givenName Nian
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143501366.38
121 rdf:type schema:Person
122 sg:person.01205155640.04 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
123 schema:familyName Lu
124 schema:givenName Zhenda
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04
126 rdf:type schema:Person
127 sg:person.01302473566.80 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
128 schema:familyName McDowell
129 schema:givenName Matthew T.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302473566.80
131 rdf:type schema:Person
132 sg:person.014552666540.04 schema:affiliation https://www.grid.ac/institutes/grid.445003.6
133 schema:familyName Cui
134 schema:givenName Yi
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04
136 rdf:type schema:Person
137 sg:person.0640406341.02 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
138 schema:familyName Lee
139 schema:givenName Hyun-Wook
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640406341.02
141 rdf:type schema:Person
142 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
143 https://doi.org/10.1038/451652a
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889034
146 https://doi.org/10.1038/nmat1368
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat2725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357993
149 https://doi.org/10.1038/nmat2725
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmat3191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037852
152 https://doi.org/10.1038/nmat3191
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nnano.2007.411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032531480
155 https://doi.org/10.1038/nnano.2007.411
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nnano.2012.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050288514
158 https://doi.org/10.1038/nnano.2012.35
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/adma.201102421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001490253
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/adma.201300844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048956654
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/aenm.201200389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026722276
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/aenm.201200857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021008593
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.electacta.2010.05.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142587
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jpowsour.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000095809
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jpowsour.2010.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023550264
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.nantod.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002365928
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0378-7753(00)00431-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050291316
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/cm051123r schema:sameAs https://app.dimensions.ai/details/publication/pub.1052389197
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jp204653y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768413
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl203817r schema:sameAs https://app.dimensions.ai/details/publication/pub.1025654344
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl3014814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003283643
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nl3044508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219854
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nl400437f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785856
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/nl902058c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040185393
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nn2017167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033336797
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/b705421c schema:sameAs https://app.dimensions.ai/details/publication/pub.1045591950
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c2cp42231j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031303018
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c2jm31286g schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107017
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/c3cc41456f schema:sameAs https://app.dimensions.ai/details/publication/pub.1014139438
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.1201088109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363670
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1195628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033649812
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1222453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007405937
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1149/1.1388178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100650
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1149/1.1652421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063188368
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1149/1.2752985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027502264
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
215 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
216 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.445003.6 schema:alternateName SLAC National Accelerator Laboratory
219 schema:name Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
220 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...