A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Nian Liu, Zhenda Lu, Jie Zhao, Matthew T. McDowell, Hyun-Wook Lee, Wenting Zhao, Yi Cui

ABSTRACT

Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)). More... »

PAGES

187-192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2014.6

DOI

http://dx.doi.org/10.1038/nnano.2014.6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003314836

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24531496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Nian", 
        "id": "sg:person.01143501366.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143501366.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Zhenda", 
        "id": "sg:person.01205155640.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jie", 
        "id": "sg:person.01132313302.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313302.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDowell", 
        "givenName": "Matthew T.", 
        "id": "sg:person.01302473566.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302473566.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyun-Wook", 
        "id": "sg:person.0640406341.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640406341.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Wenting", 
        "id": "sg:person.01001465154.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001465154.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SLAC National Accelerator Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.445003.6", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA", 
            "Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Yi", 
        "id": "sg:person.014552666540.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000095809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001490253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002365928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3014814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003283643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007405937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl400437f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cc41456f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014139438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021008593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023550264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp204653y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp204653y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.05.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl203817r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025654344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2752985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027502264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029037852", 
          "https://doi.org/10.1038/nmat3191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1388178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029100650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp42231j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031303018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm31286g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032531480", 
          "https://doi.org/10.1038/nnano.2007.411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn2017167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033336797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033649812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl902058c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040185393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl902058c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040185393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b705421c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045591950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201300844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048956654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050288514", 
          "https://doi.org/10.1038/nnano.2012.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(00)00431-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050291316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm051123r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052389197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm051123r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052389197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357993", 
          "https://doi.org/10.1038/nmat2725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357993", 
          "https://doi.org/10.1038/nmat2725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1201088109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3044508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1652421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063188368"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (\u223c300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270\u00a0mAh\u00a0cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7\u00a0mAh\u00a0cm(-2)). ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2014.6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes", 
    "pagination": "187-192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fca186cb0fd48a4606f6a68f27bc60b2d7ee1a0ef8b5f5b96a02d9978830a9c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24531496"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2014.6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003314836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2014.6", 
      "https://app.dimensions.ai/details/publication/pub.1003314836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v9/n3/full/nnano.2014.6.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.6'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2014.6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N31bc59e9aa8842e18aa1f1d4cbd2780f
4 schema:citation sg:pub.10.1038/451652a
5 sg:pub.10.1038/nmat1368
6 sg:pub.10.1038/nmat2725
7 sg:pub.10.1038/nmat3191
8 sg:pub.10.1038/nnano.2007.411
9 sg:pub.10.1038/nnano.2012.35
10 https://doi.org/10.1002/adma.201102421
11 https://doi.org/10.1002/adma.201300844
12 https://doi.org/10.1002/aenm.201200389
13 https://doi.org/10.1002/aenm.201200857
14 https://doi.org/10.1016/j.electacta.2010.05.072
15 https://doi.org/10.1016/j.jpowsour.2009.01.007
16 https://doi.org/10.1016/j.jpowsour.2010.02.021
17 https://doi.org/10.1016/j.nantod.2012.08.004
18 https://doi.org/10.1016/s0378-7753(00)00431-6
19 https://doi.org/10.1021/cm051123r
20 https://doi.org/10.1021/jp204653y
21 https://doi.org/10.1021/nl203817r
22 https://doi.org/10.1021/nl3014814
23 https://doi.org/10.1021/nl3044508
24 https://doi.org/10.1021/nl400437f
25 https://doi.org/10.1021/nl902058c
26 https://doi.org/10.1021/nn2017167
27 https://doi.org/10.1039/b705421c
28 https://doi.org/10.1039/c2cp42231j
29 https://doi.org/10.1039/c2jm31286g
30 https://doi.org/10.1039/c3cc41456f
31 https://doi.org/10.1073/pnas.1201088109
32 https://doi.org/10.1126/science.1195628
33 https://doi.org/10.1126/science.1222453
34 https://doi.org/10.1149/1.1388178
35 https://doi.org/10.1149/1.1652421
36 https://doi.org/10.1149/1.2752985
37 schema:datePublished 2014-03
38 schema:datePublishedReg 2014-03-01
39 schema:description Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)).
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N2d967d40b7834af5ab509add73dc4a8d
44 N5069a7f056a34c88820adb232e3763df
45 sg:journal.1037429
46 schema:name A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
47 schema:pagination 187-192
48 schema:productId N03881207a96a4e5582bc425880a5103c
49 N08ea027f51a54435ac8a3b3fd35c8736
50 N4128ad49a43d4d9c8f1825170f76acda
51 N724216d8300041de8faf83e2aac6647b
52 Nb8e061642d0a414799f70270ab49e170
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003314836
54 https://doi.org/10.1038/nnano.2014.6
55 schema:sdDatePublished 2019-04-11T00:54
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4508f4d0850b4db0ac7f411c98c9f309
58 schema:url http://www.nature.com/nnano/journal/v9/n3/full/nnano.2014.6.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N03881207a96a4e5582bc425880a5103c schema:name nlm_unique_id
63 schema:value 101283273
64 rdf:type schema:PropertyValue
65 N08ea027f51a54435ac8a3b3fd35c8736 schema:name doi
66 schema:value 10.1038/nnano.2014.6
67 rdf:type schema:PropertyValue
68 N138ab77bcc39468180ce18411a43e888 rdf:first sg:person.0640406341.02
69 rdf:rest Nc7f2386f2b2e44ad930558f75677291b
70 N2d967d40b7834af5ab509add73dc4a8d schema:volumeNumber 9
71 rdf:type schema:PublicationVolume
72 N31bc59e9aa8842e18aa1f1d4cbd2780f rdf:first sg:person.01143501366.38
73 rdf:rest N494ebb4c0a4c4180bb7ea8f44cc2db76
74 N4128ad49a43d4d9c8f1825170f76acda schema:name pubmed_id
75 schema:value 24531496
76 rdf:type schema:PropertyValue
77 N4157db9e23f441f28619ca580b5bd03c rdf:first sg:person.01132313302.17
78 rdf:rest N6f0347d0e6cc4786aeb40cfb1e93678d
79 N4508f4d0850b4db0ac7f411c98c9f309 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N494ebb4c0a4c4180bb7ea8f44cc2db76 rdf:first sg:person.01205155640.04
82 rdf:rest N4157db9e23f441f28619ca580b5bd03c
83 N5069a7f056a34c88820adb232e3763df schema:issueNumber 3
84 rdf:type schema:PublicationIssue
85 N6f0347d0e6cc4786aeb40cfb1e93678d rdf:first sg:person.01302473566.80
86 rdf:rest N138ab77bcc39468180ce18411a43e888
87 N724216d8300041de8faf83e2aac6647b schema:name readcube_id
88 schema:value 0fca186cb0fd48a4606f6a68f27bc60b2d7ee1a0ef8b5f5b96a02d9978830a9c
89 rdf:type schema:PropertyValue
90 N9fdfdd49483841b89e60e536ddaf3acd rdf:first sg:person.014552666540.04
91 rdf:rest rdf:nil
92 Nb8e061642d0a414799f70270ab49e170 schema:name dimensions_id
93 schema:value pub.1003314836
94 rdf:type schema:PropertyValue
95 Nc7f2386f2b2e44ad930558f75677291b rdf:first sg:person.01001465154.61
96 rdf:rest N9fdfdd49483841b89e60e536ddaf3acd
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:journal.1037429 schema:issn 1748-3387
104 1748-3395
105 schema:name Nature Nanotechnology
106 rdf:type schema:Periodical
107 sg:person.01001465154.61 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
108 schema:familyName Zhao
109 schema:givenName Wenting
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001465154.61
111 rdf:type schema:Person
112 sg:person.01132313302.17 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
113 schema:familyName Zhao
114 schema:givenName Jie
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313302.17
116 rdf:type schema:Person
117 sg:person.01143501366.38 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
118 schema:familyName Liu
119 schema:givenName Nian
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143501366.38
121 rdf:type schema:Person
122 sg:person.01205155640.04 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
123 schema:familyName Lu
124 schema:givenName Zhenda
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04
126 rdf:type schema:Person
127 sg:person.01302473566.80 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
128 schema:familyName McDowell
129 schema:givenName Matthew T.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302473566.80
131 rdf:type schema:Person
132 sg:person.014552666540.04 schema:affiliation https://www.grid.ac/institutes/grid.445003.6
133 schema:familyName Cui
134 schema:givenName Yi
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04
136 rdf:type schema:Person
137 sg:person.0640406341.02 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
138 schema:familyName Lee
139 schema:givenName Hyun-Wook
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640406341.02
141 rdf:type schema:Person
142 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
143 https://doi.org/10.1038/451652a
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889034
146 https://doi.org/10.1038/nmat1368
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat2725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357993
149 https://doi.org/10.1038/nmat2725
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmat3191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037852
152 https://doi.org/10.1038/nmat3191
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nnano.2007.411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032531480
155 https://doi.org/10.1038/nnano.2007.411
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nnano.2012.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050288514
158 https://doi.org/10.1038/nnano.2012.35
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/adma.201102421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001490253
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/adma.201300844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048956654
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/aenm.201200389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026722276
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/aenm.201200857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021008593
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.electacta.2010.05.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142587
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jpowsour.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000095809
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jpowsour.2010.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023550264
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.nantod.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002365928
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0378-7753(00)00431-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050291316
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/cm051123r schema:sameAs https://app.dimensions.ai/details/publication/pub.1052389197
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jp204653y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768413
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl203817r schema:sameAs https://app.dimensions.ai/details/publication/pub.1025654344
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl3014814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003283643
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nl3044508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219854
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nl400437f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785856
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/nl902058c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040185393
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nn2017167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033336797
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/b705421c schema:sameAs https://app.dimensions.ai/details/publication/pub.1045591950
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c2cp42231j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031303018
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c2jm31286g schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107017
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/c3cc41456f schema:sameAs https://app.dimensions.ai/details/publication/pub.1014139438
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.1201088109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363670
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1195628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033649812
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1222453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007405937
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1149/1.1388178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100650
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1149/1.1652421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063188368
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1149/1.2752985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027502264
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
215 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
216 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.445003.6 schema:alternateName SLAC National Accelerator Laboratory
219 schema:name Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
220 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...