Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

D. Rugar, H. J. Mamin, M. H. Sherwood, M. Kim, C. T. Rettner, K. Ohno, D. D. Awschalom

ABSTRACT

Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. One successful example is magnetic resonance force microscopy, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10 nm, but with the requirement of operating at cryogenic temperatures. Nitrogen-vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature. Here, we demonstrate two-dimensional imaging of (1)H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of ∼12 nm is shown, limited primarily by the scan resolution. More... »

PAGES

120-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2014.288

DOI

http://dx.doi.org/10.1038/nnano.2014.288

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021525467

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25531089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymethyl Methacrylate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rugar", 
        "givenName": "D.", 
        "id": "sg:person.01141155153.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141155153.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mamin", 
        "givenName": "H. J.", 
        "id": "sg:person.0720277327.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720277327.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherwood", 
        "givenName": "M. H.", 
        "id": "sg:person.01045363420.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045363420.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA", 
            "Center for Probing the Nanoscale, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "M.", 
        "id": "sg:person.0777250220.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777250220.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rettner", 
        "givenName": "C. T.", 
        "id": "sg:person.01236253633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohno", 
        "givenName": "K.", 
        "id": "sg:person.01002652024.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002652024.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA", 
            "Institute for Molecular Engineering, University of Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awschalom", 
        "givenName": "D. D.", 
        "id": "sg:person.01024231643.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevx.3.031016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000369453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.031016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000369453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4862749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001272836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(90)90331-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006386408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009501475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009501475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4748280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009508995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0812068106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014942965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.054414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017461474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.054414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017461474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017804127", 
          "https://doi.org/10.1038/nature07279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/34/342001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021683752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.130501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022659626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.130501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022659626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.030803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022869537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.030803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022869537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022967919", 
          "https://doi.org/10.1038/ncomms5703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/10/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023942678", 
          "https://doi.org/10.1038/nature07278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2943282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023984244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2432410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025460725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025460725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl402286v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032343484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037367336", 
          "https://doi.org/10.1038/nphys2543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039782980", 
          "https://doi.org/10.1038/nnano.2012.152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2834737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039788001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-030212-184238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040552102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042574393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042574393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044309770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044309770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3519849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044950561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046778117", 
          "https://doi.org/10.1038/nnano.2014.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051756686", 
          "https://doi.org/10.1038/nphys2026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052107194", 
          "https://doi.org/10.1038/nphys1075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052492900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053456900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053456900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053491152", 
          "https://doi.org/10.1038/nnano.2010.6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3673910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057997514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/5/055004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.67.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.67.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. One successful example is magnetic resonance force microscopy, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10\u2005nm, but with the requirement of operating at cryogenic temperatures. Nitrogen-vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature. Here, we demonstrate two-dimensional imaging of (1)H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of \u223c12\u2005nm is shown, limited primarily by the scan resolution. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2014.288", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2996962", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Proton magnetic resonance imaging using a nitrogen\u2013vacancy spin sensor", 
    "pagination": "120-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "668ef89c30681214af1b3568a7abed9be77946434c7040dcebf22abe26f75f4b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25531089"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2014.288"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021525467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2014.288", 
      "https://app.dimensions.ai/details/publication/pub.1021525467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v10/n2/full/nnano.2014.288.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.288'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.288'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.288'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2014.288'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      70 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2014.288 schema:about N60e7c1b061384b409c8c3c8435b9b56c
2 N8e450834a4b14402b8b74b2fe8b251cb
3 Nc219af40f0dd4d78a7ee8ebeaf178efd
4 Nca541fcfd5104294b40d212b88698ac7
5 Nfcf638d8f3864c1bb1e343cd1545d36a
6 anzsrc-for:02
7 anzsrc-for:0299
8 schema:author Nf469628625b8494281257117f9509f4a
9 schema:citation sg:pub.10.1038/nature07278
10 sg:pub.10.1038/nature07279
11 sg:pub.10.1038/ncomms5703
12 sg:pub.10.1038/nnano.2010.6
13 sg:pub.10.1038/nnano.2012.152
14 sg:pub.10.1038/nnano.2014.30
15 sg:pub.10.1038/nphys1075
16 sg:pub.10.1038/nphys2026
17 sg:pub.10.1038/nphys2543
18 https://doi.org/10.1016/0022-2364(90)90331-3
19 https://doi.org/10.1021/nl402286v
20 https://doi.org/10.1063/1.2432410
21 https://doi.org/10.1063/1.2834737
22 https://doi.org/10.1063/1.2943282
23 https://doi.org/10.1063/1.3519849
24 https://doi.org/10.1063/1.3673910
25 https://doi.org/10.1063/1.4748280
26 https://doi.org/10.1063/1.4862749
27 https://doi.org/10.1073/pnas.0812068106
28 https://doi.org/10.1088/0034-4885/65/10/203
29 https://doi.org/10.1088/0957-4484/21/34/342001
30 https://doi.org/10.1088/1367-2630/13/5/055004
31 https://doi.org/10.1103/physrevb.85.054414
32 https://doi.org/10.1103/physrevb.86.195422
33 https://doi.org/10.1103/physrevlett.109.137601
34 https://doi.org/10.1103/physrevlett.109.137602
35 https://doi.org/10.1103/physrevlett.112.147602
36 https://doi.org/10.1103/physrevlett.113.027602
37 https://doi.org/10.1103/physrevlett.113.030803
38 https://doi.org/10.1103/physrevlett.93.130501
39 https://doi.org/10.1103/physrevx.3.031016
40 https://doi.org/10.1103/revmodphys.67.249
41 https://doi.org/10.1103/revmodphys.75.949
42 https://doi.org/10.1126/science.1231540
43 https://doi.org/10.1126/science.1231675
44 https://doi.org/10.1146/annurev-conmatphys-030212-184238
45 schema:datePublished 2015-02
46 schema:datePublishedReg 2015-02-01
47 schema:description Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. One successful example is magnetic resonance force microscopy, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10 nm, but with the requirement of operating at cryogenic temperatures. Nitrogen-vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature. Here, we demonstrate two-dimensional imaging of (1)H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of ∼12 nm is shown, limited primarily by the scan resolution.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N610ad187b4614037abc0189aa75f79a6
52 Nd44f94a5ccf74b4e8061af309f9626ce
53 sg:journal.1037429
54 schema:name Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor
55 schema:pagination 120-124
56 schema:productId N1c0c4bcc6eba4bf8a19575030da305c5
57 N71110fca78224fdcbf566c1643ee8f84
58 N7c1cfbb557054c438887e173fc2632ee
59 Nbb5d9c4c302b408dace0e54031623fef
60 Ne53e71613b034234983f567bbf274bd3
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021525467
62 https://doi.org/10.1038/nnano.2014.288
63 schema:sdDatePublished 2019-04-10T13:55
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N43162295387343438a9aa9d6aa966ad2
66 schema:url http://www.nature.com/nnano/journal/v10/n2/full/nnano.2014.288.html
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N1c0c4bcc6eba4bf8a19575030da305c5 schema:name readcube_id
71 schema:value 668ef89c30681214af1b3568a7abed9be77946434c7040dcebf22abe26f75f4b
72 rdf:type schema:PropertyValue
73 N43162295387343438a9aa9d6aa966ad2 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N4a1bada9d3c048b9a2e83a75d9d45874 rdf:first sg:person.01236253633.11
76 rdf:rest Na1c04bf555c74a66a9cc14d609b5e16c
77 N60e7c1b061384b409c8c3c8435b9b56c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Magnetic Resonance Imaging
79 rdf:type schema:DefinedTerm
80 N610ad187b4614037abc0189aa75f79a6 schema:volumeNumber 10
81 rdf:type schema:PublicationVolume
82 N71110fca78224fdcbf566c1643ee8f84 schema:name pubmed_id
83 schema:value 25531089
84 rdf:type schema:PropertyValue
85 N7c1cfbb557054c438887e173fc2632ee schema:name dimensions_id
86 schema:value pub.1021525467
87 rdf:type schema:PropertyValue
88 N835e7cfe62d84523966494be86c73cf2 rdf:first sg:person.01045363420.89
89 rdf:rest Nd59a35cc15744f18bc8a1e5258989168
90 N8e450834a4b14402b8b74b2fe8b251cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Theoretical
92 rdf:type schema:DefinedTerm
93 Na1c04bf555c74a66a9cc14d609b5e16c rdf:first sg:person.01002652024.05
94 rdf:rest Nb25feeb66af948cd98c4e31a83a0b7c1
95 Nb25feeb66af948cd98c4e31a83a0b7c1 rdf:first sg:person.01024231643.99
96 rdf:rest rdf:nil
97 Nbb5d9c4c302b408dace0e54031623fef schema:name nlm_unique_id
98 schema:value 101283273
99 rdf:type schema:PropertyValue
100 Nc219af40f0dd4d78a7ee8ebeaf178efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Proton Magnetic Resonance Spectroscopy
102 rdf:type schema:DefinedTerm
103 Nca541fcfd5104294b40d212b88698ac7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Polymethyl Methacrylate
105 rdf:type schema:DefinedTerm
106 Nd44f94a5ccf74b4e8061af309f9626ce schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Nd59a35cc15744f18bc8a1e5258989168 rdf:first sg:person.0777250220.67
109 rdf:rest N4a1bada9d3c048b9a2e83a75d9d45874
110 Ne53e71613b034234983f567bbf274bd3 schema:name doi
111 schema:value 10.1038/nnano.2014.288
112 rdf:type schema:PropertyValue
113 Nea9372bf0218457e9bd1d1ff468a8350 rdf:first sg:person.0720277327.09
114 rdf:rest N835e7cfe62d84523966494be86c73cf2
115 Nf469628625b8494281257117f9509f4a rdf:first sg:person.01141155153.07
116 rdf:rest Nea9372bf0218457e9bd1d1ff468a8350
117 Nfcf638d8f3864c1bb1e343cd1545d36a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Nitrogen
119 rdf:type schema:DefinedTerm
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
124 schema:name Other Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.2996962 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2014.288
127 rdf:type schema:MonetaryGrant
128 sg:journal.1037429 schema:issn 1748-3387
129 1748-3395
130 schema:name Nature Nanotechnology
131 rdf:type schema:Periodical
132 sg:person.01002652024.05 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
133 schema:familyName Ohno
134 schema:givenName K.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002652024.05
136 rdf:type schema:Person
137 sg:person.01024231643.99 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
138 schema:familyName Awschalom
139 schema:givenName D. D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99
141 rdf:type schema:Person
142 sg:person.01045363420.89 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
143 schema:familyName Sherwood
144 schema:givenName M. H.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045363420.89
146 rdf:type schema:Person
147 sg:person.01141155153.07 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
148 schema:familyName Rugar
149 schema:givenName D.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141155153.07
151 rdf:type schema:Person
152 sg:person.01236253633.11 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
153 schema:familyName Rettner
154 schema:givenName C. T.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11
156 rdf:type schema:Person
157 sg:person.0720277327.09 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
158 schema:familyName Mamin
159 schema:givenName H. J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720277327.09
161 rdf:type schema:Person
162 sg:person.0777250220.67 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
163 schema:familyName Kim
164 schema:givenName M.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777250220.67
166 rdf:type schema:Person
167 sg:pub.10.1038/nature07278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023942678
168 https://doi.org/10.1038/nature07278
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature07279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017804127
171 https://doi.org/10.1038/nature07279
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms5703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022967919
174 https://doi.org/10.1038/ncomms5703
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2010.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053491152
177 https://doi.org/10.1038/nnano.2010.6
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nnano.2012.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039782980
180 https://doi.org/10.1038/nnano.2012.152
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nnano.2014.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046778117
183 https://doi.org/10.1038/nnano.2014.30
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nphys1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052107194
186 https://doi.org/10.1038/nphys1075
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphys2026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051756686
189 https://doi.org/10.1038/nphys2026
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nphys2543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367336
192 https://doi.org/10.1038/nphys2543
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/0022-2364(90)90331-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006386408
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/nl402286v schema:sameAs https://app.dimensions.ai/details/publication/pub.1032343484
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.2432410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242233
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.2834737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039788001
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.2943282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023984244
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.3519849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044950561
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.3673910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057997514
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1063/1.4748280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009508995
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1063/1.4862749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001272836
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.0812068106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767380
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1088/0034-4885/65/10/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058828
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/0957-4484/21/34/342001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021683752
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1088/1367-2630/13/5/055004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135391
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.85.054414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017461474
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.86.195422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025460725
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.109.137601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042574393
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.109.137602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009501475
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.112.147602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053456900
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.113.027602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003562710
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.113.030803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022869537
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.93.130501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022659626
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevx.3.031016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000369453
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/revmodphys.67.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839340
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/revmodphys.75.949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044309770
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1231540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014942965
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1231675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052492900
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1146/annurev-conmatphys-030212-184238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040552102
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
249 schema:name Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA
250 Institute for Molecular Engineering, University of Chicago, Illinois 60637, USA
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
253 schema:name Center for Probing the Nanoscale, Stanford University, Stanford, California 94305, USA
254 IBM Research Division, Almaden Research Center, San Jose, California 95120, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
257 schema:name IBM Research Division, Almaden Research Center, San Jose, California 95120, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...