Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-11

AUTHORS

J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert

ABSTRACT

Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects. More... »

PAGES

839-844

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.210

DOI

http://dx.doi.org/10.1038/nnano.2013.210

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022657870

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24162000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 Mixte de Physique CNRS/Thales", 
          "id": "https://www.grid.ac/institutes/grid.462731.5", 
          "name": [
            "Unit\u00e9 Mixte de Physique CNRS/Thales and Universit\u00e9 Paris Sud, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampaio", 
        "givenName": "J.", 
        "id": "sg:person.01306357246.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306357246.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 Mixte de Physique CNRS/Thales", 
          "id": "https://www.grid.ac/institutes/grid.462731.5", 
          "name": [
            "Unit\u00e9 Mixte de Physique CNRS/Thales and Universit\u00e9 Paris Sud, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cros", 
        "givenName": "V.", 
        "id": "sg:person.01343024426.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343024426.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.462447.7", 
          "name": [
            "Laboratoire de Physique des Solides, Universit\u00e9 Paris Sud, CNRS, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohart", 
        "givenName": "S.", 
        "id": "sg:person.01142604511.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142604511.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.462447.7", 
          "name": [
            "Laboratoire de Physique des Solides, Universit\u00e9 Paris Sud, CNRS, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiaville", 
        "givenName": "A.", 
        "id": "sg:person.01030134223.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030134223.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 Mixte de Physique CNRS/Thales", 
          "id": "https://www.grid.ac/institutes/grid.462731.5", 
          "name": [
            "Unit\u00e9 Mixte de Physique CNRS/Thales and Universit\u00e9 Paris Sud, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fert", 
        "givenName": "A.", 
        "id": "sg:person.01223731431.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223731431.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1240573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006493980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006853479", 
          "https://doi.org/10.1038/nnano.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/44/39/392001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553648", 
          "https://doi.org/10.1038/nmat3675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(97)01044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026881618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027066544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027066544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029420270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029420270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936903", 
          "https://doi.org/10.1038/nphys2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030997696", 
          "https://doi.org/10.1038/ncomms1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704122", 
          "https://doi.org/10.1038/nphys1968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037950420", 
          "https://doi.org/10.1038/ncomms2442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35082010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045224542", 
          "https://doi.org/10.1038/35082010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047913674", 
          "https://doi.org/10.1038/nnano.2013.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.01.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053493832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4775684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058066578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.094410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.094410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.167201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.167201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.1538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.1538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.280855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061110421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1230155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5371.1919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.59-60.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072128979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-11", 
    "datePublishedReg": "2013-11-01", 
    "description": "Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2013.210", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures", 
    "pagination": "839-844", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6bf1b2b55650f49ebb164249d6d58b5ff6653ebdbbac6bcbc854fa5191210a6f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24162000"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.210"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022657870"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.210", 
      "https://app.dimensions.ai/details/publication/pub.1022657870"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nnano.2013.210"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.210'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.210'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.210'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.210'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.210 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1bef4957e30b4c5d95a05000ff088c91
4 schema:citation sg:pub.10.1038/35082010
5 sg:pub.10.1038/nature05056
6 sg:pub.10.1038/nature09124
7 sg:pub.10.1038/ncomms1990
8 sg:pub.10.1038/ncomms2442
9 sg:pub.10.1038/nmat2024
10 sg:pub.10.1038/nmat3020
11 sg:pub.10.1038/nmat3675
12 sg:pub.10.1038/nnano.2013.102
13 sg:pub.10.1038/nnano.2013.29
14 sg:pub.10.1038/nphys1968
15 sg:pub.10.1038/nphys2045
16 sg:pub.10.1038/nphys2231
17 https://doi.org/10.1016/0022-3697(58)90076-3
18 https://doi.org/10.1016/0029-5582(62)90775-7
19 https://doi.org/10.1016/j.jmmm.2006.01.113
20 https://doi.org/10.1016/s0304-8853(97)01044-5
21 https://doi.org/10.1063/1.4775684
22 https://doi.org/10.1088/0022-3727/44/39/392001
23 https://doi.org/10.1103/physrev.120.91
24 https://doi.org/10.1103/physrevb.67.094410
25 https://doi.org/10.1103/physrevb.78.140403
26 https://doi.org/10.1103/physrevb.79.224429
27 https://doi.org/10.1103/physrevb.86.054432
28 https://doi.org/10.1103/physrevb.87.020402
29 https://doi.org/10.1103/physrevlett.101.027201
30 https://doi.org/10.1103/physrevlett.102.067206
31 https://doi.org/10.1103/physrevlett.108.267201
32 https://doi.org/10.1103/physrevlett.110.167201
33 https://doi.org/10.1103/physrevlett.30.230
34 https://doi.org/10.1103/physrevlett.44.1538
35 https://doi.org/10.1103/physrevlett.99.217208
36 https://doi.org/10.1103/revmodphys.61.385
37 https://doi.org/10.1109/20.280855
38 https://doi.org/10.1126/science.1145799
39 https://doi.org/10.1126/science.1166767
40 https://doi.org/10.1126/science.1195709
41 https://doi.org/10.1126/science.1230155
42 https://doi.org/10.1126/science.1234657
43 https://doi.org/10.1126/science.1240573
44 https://doi.org/10.1126/science.280.5371.1919
45 https://doi.org/10.1209/0295-5075/100/57002
46 https://doi.org/10.1209/epl/i2004-10452-6
47 https://doi.org/10.4028/www.scientific.net/msf.59-60.439
48 schema:datePublished 2013-11
49 schema:datePublishedReg 2013-11-01
50 schema:description Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N2b54e81e5ed744cdb4fb1ddaa3a803a9
55 N79e5367bfd6043a7b287076891af80f0
56 sg:journal.1037429
57 schema:name Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
58 schema:pagination 839-844
59 schema:productId N0cfef20ea1e74fa5b55eaceb90cbc6dd
60 N1e57992819454f2e8bb6f2b7a622f245
61 N775a7411bc6845a28728022f322e7556
62 Ne124be9f5ce042b1b41a4c969ff75184
63 Nf12c6a207fc54b9f862e5680548962a2
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657870
65 https://doi.org/10.1038/nnano.2013.210
66 schema:sdDatePublished 2019-04-10T21:24
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N8da074461e5045989468a745d7648bf7
69 schema:url http://www.nature.com/articles/nnano.2013.210
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0cfef20ea1e74fa5b55eaceb90cbc6dd schema:name nlm_unique_id
74 schema:value 101283273
75 rdf:type schema:PropertyValue
76 N0fe278daa30f4eee9b187f73bd924969 rdf:first sg:person.01343024426.40
77 rdf:rest N41f1aad792eb42e7836675c8a2a09157
78 N1bef4957e30b4c5d95a05000ff088c91 rdf:first sg:person.01306357246.47
79 rdf:rest N0fe278daa30f4eee9b187f73bd924969
80 N1e57992819454f2e8bb6f2b7a622f245 schema:name pubmed_id
81 schema:value 24162000
82 rdf:type schema:PropertyValue
83 N2b54e81e5ed744cdb4fb1ddaa3a803a9 schema:volumeNumber 8
84 rdf:type schema:PublicationVolume
85 N41f1aad792eb42e7836675c8a2a09157 rdf:first sg:person.01142604511.24
86 rdf:rest N9f9adc7e82254ea5bbd59bc34dcd4da9
87 N775a7411bc6845a28728022f322e7556 schema:name readcube_id
88 schema:value 6bf1b2b55650f49ebb164249d6d58b5ff6653ebdbbac6bcbc854fa5191210a6f
89 rdf:type schema:PropertyValue
90 N79e5367bfd6043a7b287076891af80f0 schema:issueNumber 11
91 rdf:type schema:PublicationIssue
92 N8da074461e5045989468a745d7648bf7 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N9f9adc7e82254ea5bbd59bc34dcd4da9 rdf:first sg:person.01030134223.40
95 rdf:rest Nb3e88b10bfdf4b50b2af494765afc2e5
96 Nb3e88b10bfdf4b50b2af494765afc2e5 rdf:first sg:person.01223731431.19
97 rdf:rest rdf:nil
98 Ne124be9f5ce042b1b41a4c969ff75184 schema:name doi
99 schema:value 10.1038/nnano.2013.210
100 rdf:type schema:PropertyValue
101 Nf12c6a207fc54b9f862e5680548962a2 schema:name dimensions_id
102 schema:value pub.1022657870
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1037429 schema:issn 1748-3387
111 1748-3395
112 schema:name Nature Nanotechnology
113 rdf:type schema:Periodical
114 sg:person.01030134223.40 schema:affiliation https://www.grid.ac/institutes/grid.462447.7
115 schema:familyName Thiaville
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030134223.40
118 rdf:type schema:Person
119 sg:person.01142604511.24 schema:affiliation https://www.grid.ac/institutes/grid.462447.7
120 schema:familyName Rohart
121 schema:givenName S.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142604511.24
123 rdf:type schema:Person
124 sg:person.01223731431.19 schema:affiliation https://www.grid.ac/institutes/grid.462731.5
125 schema:familyName Fert
126 schema:givenName A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223731431.19
128 rdf:type schema:Person
129 sg:person.01306357246.47 schema:affiliation https://www.grid.ac/institutes/grid.462731.5
130 schema:familyName Sampaio
131 schema:givenName J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306357246.47
133 rdf:type schema:Person
134 sg:person.01343024426.40 schema:affiliation https://www.grid.ac/institutes/grid.462731.5
135 schema:familyName Cros
136 schema:givenName V.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343024426.40
138 rdf:type schema:Person
139 sg:pub.10.1038/35082010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045224542
140 https://doi.org/10.1038/35082010
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
143 https://doi.org/10.1038/nature05056
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
146 https://doi.org/10.1038/nature09124
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
149 https://doi.org/10.1038/ncomms1990
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncomms2442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
152 https://doi.org/10.1038/ncomms2442
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
155 https://doi.org/10.1038/nmat2024
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
158 https://doi.org/10.1038/nmat3020
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat3675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553648
161 https://doi.org/10.1038/nmat3675
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nnano.2013.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
164 https://doi.org/10.1038/nnano.2013.102
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
167 https://doi.org/10.1038/nnano.2013.29
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys1968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032704122
170 https://doi.org/10.1038/nphys1968
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
173 https://doi.org/10.1038/nphys2045
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
176 https://doi.org/10.1038/nphys2231
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0022-3697(58)90076-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010776776
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jmmm.2006.01.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053493832
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0304-8853(97)01044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026881618
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.4775684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058066578
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/0022-3727/44/39/392001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025192850
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.67.094410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605847
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.78.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032728699
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.79.224429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628586
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.101.027201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753745
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.102.067206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029420270
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.108.267201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760008
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.110.167201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761458
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.30.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777021
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.44.1538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784831
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.99.217208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027066544
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/revmodphys.61.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839174
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/20.280855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061110421
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1230155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467701
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1234657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468000
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1240573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493980
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.280.5371.1919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561499
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
237 rdf:type schema:CreativeWork
238 https://doi.org/10.4028/www.scientific.net/msf.59-60.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072128979
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.462447.7 schema:alternateName Laboratory of Solid State Physics
241 schema:name Laboratoire de Physique des Solides, Université Paris Sud, CNRS, Orsay, France
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.462731.5 schema:alternateName Unité Mixte de Physique CNRS/Thales
244 schema:name Unité Mixte de Physique CNRS/Thales and Université Paris Sud, Palaiseau, France
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...