Current-induced skyrmion dynamics in constricted geometries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

Junichi Iwasaki, Masahito Mochizuki, Naoto Nagaosa

ABSTRACT

Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers. More... »

PAGES

742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.176

DOI

http://dx.doi.org/10.1038/nnano.2013.176

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019530671

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24013132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwasaki", 
        "givenName": "Junichi", 
        "id": "sg:person.0705107015.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aoyama Gakuin University", 
          "id": "https://www.grid.ac/institutes/grid.252311.6", 
          "name": [
            "Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, 229-8558, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mochizuki", 
        "givenName": "Masahito", 
        "id": "sg:person.0656317163.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan", 
            "RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagaosa", 
        "givenName": "Naoto", 
        "id": "sg:person.01026056365.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000753350", 
          "https://doi.org/10.1038/nmat2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001676539", 
          "https://doi.org/10.1038/nmat1867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006853479", 
          "https://doi.org/10.1038/nnano.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1118496109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936903", 
          "https://doi.org/10.1038/nphys2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030997696", 
          "https://doi.org/10.1038/ncomms1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/12/125401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033080858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2780107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037524792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037950420", 
          "https://doi.org/10.1038/ncomms2442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042504960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042504960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2042542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.15156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.15156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.267202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.267202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465664"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2013.176", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6133100", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6079643", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6106462", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Current-induced skyrmion dynamics in constricted geometries", 
    "pagination": "742", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d0e8bc753686e4b7f547896d3824d2dcc9362f467da5d351770458d9ab17d0c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24013132"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.176"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019530671"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.176", 
      "https://app.dimensions.ai/details/publication/pub.1019530671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2013.176"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.176 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N805c98aa8c464656a1b966f934afa05a
4 schema:citation sg:pub.10.1038/nature09124
5 sg:pub.10.1038/ncomms1990
6 sg:pub.10.1038/ncomms2442
7 sg:pub.10.1038/nmat1867
8 sg:pub.10.1038/nmat2916
9 sg:pub.10.1038/nnano.2013.29
10 sg:pub.10.1038/nphys2231
11 https://doi.org/10.1016/0029-5582(62)90775-7
12 https://doi.org/10.1063/1.2042542
13 https://doi.org/10.1063/1.2780107
14 https://doi.org/10.1073/pnas.1118496109
15 https://doi.org/10.1088/0957-4484/20/12/125401
16 https://doi.org/10.1103/physrevb.54.15156
17 https://doi.org/10.1103/physrevb.73.020403
18 https://doi.org/10.1103/physrevb.81.041203
19 https://doi.org/10.1103/physrevb.85.174416
20 https://doi.org/10.1103/physrevb.86.054432
21 https://doi.org/10.1103/physrevlett.110.177205
22 https://doi.org/10.1103/physrevlett.96.067205
23 https://doi.org/10.1103/physrevlett.98.267202
24 https://doi.org/10.1126/science.1166767
25 https://doi.org/10.1126/science.1195709
26 https://doi.org/10.1126/science.1214143
27 schema:datePublished 2013-10
28 schema:datePublishedReg 2013-10-01
29 schema:description Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N129ef3ed900846b0b29a5b56fb000eff
34 N544007a35be84fdf9566e0de2fe5cbf4
35 sg:journal.1037429
36 schema:name Current-induced skyrmion dynamics in constricted geometries
37 schema:pagination 742
38 schema:productId N32ac2d623d974601ac8ba32dda9267c3
39 N573f70bf0951466ca94b6b9a51ccc39d
40 N6db54dbc8d8847afa9e41a48889416f1
41 Nc1abcaeab12244318f1640a72d849451
42 Nef3155065e7845888ae365b17d519c5d
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019530671
44 https://doi.org/10.1038/nnano.2013.176
45 schema:sdDatePublished 2019-04-10T19:45
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N781b1e3e16a244f49f3a79082d8771a5
48 schema:url https://www.nature.com/articles/nnano.2013.176
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N129ef3ed900846b0b29a5b56fb000eff schema:issueNumber 10
53 rdf:type schema:PublicationIssue
54 N2828ea30619e4f7a90e4de2874027050 rdf:first sg:person.0656317163.96
55 rdf:rest N2c4ab7e7c7834c39857db26fe505bc30
56 N2c4ab7e7c7834c39857db26fe505bc30 rdf:first sg:person.01026056365.79
57 rdf:rest rdf:nil
58 N32ac2d623d974601ac8ba32dda9267c3 schema:name readcube_id
59 schema:value 5d0e8bc753686e4b7f547896d3824d2dcc9362f467da5d351770458d9ab17d0c
60 rdf:type schema:PropertyValue
61 N544007a35be84fdf9566e0de2fe5cbf4 schema:volumeNumber 8
62 rdf:type schema:PublicationVolume
63 N573f70bf0951466ca94b6b9a51ccc39d schema:name dimensions_id
64 schema:value pub.1019530671
65 rdf:type schema:PropertyValue
66 N6db54dbc8d8847afa9e41a48889416f1 schema:name nlm_unique_id
67 schema:value 101283273
68 rdf:type schema:PropertyValue
69 N781b1e3e16a244f49f3a79082d8771a5 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N805c98aa8c464656a1b966f934afa05a rdf:first sg:person.0705107015.63
72 rdf:rest N2828ea30619e4f7a90e4de2874027050
73 Nc1abcaeab12244318f1640a72d849451 schema:name pubmed_id
74 schema:value 24013132
75 rdf:type schema:PropertyValue
76 Nef3155065e7845888ae365b17d519c5d schema:name doi
77 schema:value 10.1038/nnano.2013.176
78 rdf:type schema:PropertyValue
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:grant.6079643 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
86 rdf:type schema:MonetaryGrant
87 sg:grant.6106462 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
88 rdf:type schema:MonetaryGrant
89 sg:grant.6133100 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
90 rdf:type schema:MonetaryGrant
91 sg:journal.1037429 schema:issn 1748-3387
92 1748-3395
93 schema:name Nature Nanotechnology
94 rdf:type schema:Periodical
95 sg:person.01026056365.79 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
96 schema:familyName Nagaosa
97 schema:givenName Naoto
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79
99 rdf:type schema:Person
100 sg:person.0656317163.96 schema:affiliation https://www.grid.ac/institutes/grid.252311.6
101 schema:familyName Mochizuki
102 schema:givenName Masahito
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96
104 rdf:type schema:Person
105 sg:person.0705107015.63 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
106 schema:familyName Iwasaki
107 schema:givenName Junichi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63
109 rdf:type schema:Person
110 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
111 https://doi.org/10.1038/nature09124
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
114 https://doi.org/10.1038/ncomms1990
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/ncomms2442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
117 https://doi.org/10.1038/ncomms2442
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nmat1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001676539
120 https://doi.org/10.1038/nmat1867
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
123 https://doi.org/10.1038/nmat2916
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
126 https://doi.org/10.1038/nnano.2013.29
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
129 https://doi.org/10.1038/nphys2231
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.2042542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836562
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.2780107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037524792
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.1118496109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715425
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0957-4484/20/12/125401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033080858
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.54.15156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581753
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.73.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075544
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.85.174416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735330
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.110.177205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042504960
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.96.067205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003223
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.98.267202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834255
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.252311.6 schema:alternateName Aoyama Gakuin University
164 schema:name Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, 229-8558, Japan
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
167 schema:name Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.474689.0 schema:alternateName RIKEN Center for Emergent Matter Science
170 schema:name Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
171 RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...