Current-induced skyrmion dynamics in constricted geometries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

Junichi Iwasaki, Masahito Mochizuki, Naoto Nagaosa

ABSTRACT

Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers. More... »

PAGES

742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.176

DOI

http://dx.doi.org/10.1038/nnano.2013.176

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019530671

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24013132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwasaki", 
        "givenName": "Junichi", 
        "id": "sg:person.0705107015.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aoyama Gakuin University", 
          "id": "https://www.grid.ac/institutes/grid.252311.6", 
          "name": [
            "Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, 229-8558, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mochizuki", 
        "givenName": "Masahito", 
        "id": "sg:person.0656317163.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan", 
            "RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagaosa", 
        "givenName": "Naoto", 
        "id": "sg:person.01026056365.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000753350", 
          "https://doi.org/10.1038/nmat2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001676539", 
          "https://doi.org/10.1038/nmat1867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006853479", 
          "https://doi.org/10.1038/nnano.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1118496109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936903", 
          "https://doi.org/10.1038/nphys2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030997696", 
          "https://doi.org/10.1038/ncomms1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/12/125401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033080858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2780107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037524792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037950420", 
          "https://doi.org/10.1038/ncomms2442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042504960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042504960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2042542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.15156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.15156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.267202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.267202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465664"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2013.176", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6133100", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6079643", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6106462", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Current-induced skyrmion dynamics in constricted geometries", 
    "pagination": "742", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d0e8bc753686e4b7f547896d3824d2dcc9362f467da5d351770458d9ab17d0c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24013132"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.176"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019530671"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.176", 
      "https://app.dimensions.ai/details/publication/pub.1019530671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2013.176"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.176'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.176 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2a1f79abf3bd48f8a38f30fa96b535d3
4 schema:citation sg:pub.10.1038/nature09124
5 sg:pub.10.1038/ncomms1990
6 sg:pub.10.1038/ncomms2442
7 sg:pub.10.1038/nmat1867
8 sg:pub.10.1038/nmat2916
9 sg:pub.10.1038/nnano.2013.29
10 sg:pub.10.1038/nphys2231
11 https://doi.org/10.1016/0029-5582(62)90775-7
12 https://doi.org/10.1063/1.2042542
13 https://doi.org/10.1063/1.2780107
14 https://doi.org/10.1073/pnas.1118496109
15 https://doi.org/10.1088/0957-4484/20/12/125401
16 https://doi.org/10.1103/physrevb.54.15156
17 https://doi.org/10.1103/physrevb.73.020403
18 https://doi.org/10.1103/physrevb.81.041203
19 https://doi.org/10.1103/physrevb.85.174416
20 https://doi.org/10.1103/physrevb.86.054432
21 https://doi.org/10.1103/physrevlett.110.177205
22 https://doi.org/10.1103/physrevlett.96.067205
23 https://doi.org/10.1103/physrevlett.98.267202
24 https://doi.org/10.1126/science.1166767
25 https://doi.org/10.1126/science.1195709
26 https://doi.org/10.1126/science.1214143
27 schema:datePublished 2013-10
28 schema:datePublishedReg 2013-10-01
29 schema:description Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6cd5e0e8f1ea4b25a20af94b83c72726
34 Ne055f26da1d24967abaa998fbeba0c16
35 sg:journal.1037429
36 schema:name Current-induced skyrmion dynamics in constricted geometries
37 schema:pagination 742
38 schema:productId N324b0b4d2aeb49a9b6c41de859ae1f29
39 N4fa7cca0ac5b4c13b978ea22a583d9e4
40 N7b3ea368ced247d6b4759a307a610705
41 Nb41659cc999a4674afcca7d4ff90a6a2
42 Nc59a58d1209e4baaa10bcb8c9bd09fd4
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019530671
44 https://doi.org/10.1038/nnano.2013.176
45 schema:sdDatePublished 2019-04-10T19:45
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N3fd08f4ef9c44393a1a91fae6da9585a
48 schema:url https://www.nature.com/articles/nnano.2013.176
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N2a1f79abf3bd48f8a38f30fa96b535d3 rdf:first sg:person.0705107015.63
53 rdf:rest N77087d9725a54ab6bce0347dd6ad849a
54 N324b0b4d2aeb49a9b6c41de859ae1f29 schema:name pubmed_id
55 schema:value 24013132
56 rdf:type schema:PropertyValue
57 N3fd08f4ef9c44393a1a91fae6da9585a schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N4fa7cca0ac5b4c13b978ea22a583d9e4 schema:name nlm_unique_id
60 schema:value 101283273
61 rdf:type schema:PropertyValue
62 N6cd5e0e8f1ea4b25a20af94b83c72726 schema:issueNumber 10
63 rdf:type schema:PublicationIssue
64 N77087d9725a54ab6bce0347dd6ad849a rdf:first sg:person.0656317163.96
65 rdf:rest N7ca53a6a33604d7f91c3ffcb52dc4f09
66 N7b3ea368ced247d6b4759a307a610705 schema:name dimensions_id
67 schema:value pub.1019530671
68 rdf:type schema:PropertyValue
69 N7ca53a6a33604d7f91c3ffcb52dc4f09 rdf:first sg:person.01026056365.79
70 rdf:rest rdf:nil
71 Nb41659cc999a4674afcca7d4ff90a6a2 schema:name doi
72 schema:value 10.1038/nnano.2013.176
73 rdf:type schema:PropertyValue
74 Nc59a58d1209e4baaa10bcb8c9bd09fd4 schema:name readcube_id
75 schema:value 5d0e8bc753686e4b7f547896d3824d2dcc9362f467da5d351770458d9ab17d0c
76 rdf:type schema:PropertyValue
77 Ne055f26da1d24967abaa998fbeba0c16 schema:volumeNumber 8
78 rdf:type schema:PublicationVolume
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:grant.6079643 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
86 rdf:type schema:MonetaryGrant
87 sg:grant.6106462 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
88 rdf:type schema:MonetaryGrant
89 sg:grant.6133100 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.176
90 rdf:type schema:MonetaryGrant
91 sg:journal.1037429 schema:issn 1748-3387
92 1748-3395
93 schema:name Nature Nanotechnology
94 rdf:type schema:Periodical
95 sg:person.01026056365.79 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
96 schema:familyName Nagaosa
97 schema:givenName Naoto
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79
99 rdf:type schema:Person
100 sg:person.0656317163.96 schema:affiliation https://www.grid.ac/institutes/grid.252311.6
101 schema:familyName Mochizuki
102 schema:givenName Masahito
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96
104 rdf:type schema:Person
105 sg:person.0705107015.63 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
106 schema:familyName Iwasaki
107 schema:givenName Junichi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63
109 rdf:type schema:Person
110 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
111 https://doi.org/10.1038/nature09124
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
114 https://doi.org/10.1038/ncomms1990
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/ncomms2442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
117 https://doi.org/10.1038/ncomms2442
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nmat1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001676539
120 https://doi.org/10.1038/nmat1867
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
123 https://doi.org/10.1038/nmat2916
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
126 https://doi.org/10.1038/nnano.2013.29
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
129 https://doi.org/10.1038/nphys2231
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.2042542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836562
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.2780107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037524792
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.1118496109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715425
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0957-4484/20/12/125401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033080858
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.54.15156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581753
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.73.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075544
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.85.174416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735330
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.110.177205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042504960
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.96.067205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003223
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.98.267202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834255
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.252311.6 schema:alternateName Aoyama Gakuin University
164 schema:name Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, 229-8558, Japan
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
167 schema:name Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.474689.0 schema:alternateName RIKEN Center for Emergent Matter Science
170 schema:name Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
171 RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...