Chiral spin torque at magnetic domain walls View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Kwang-Su Ryu, Luc Thomas, See-Hun Yang, Stuart Parkin

ABSTRACT

Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. More... »

PAGES

527-533

Journal

TITLE

Nature Nanotechnology

ISSUE

7

VOLUME

8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.102

DOI

http://dx.doi.org/10.1038/nnano.2013.102

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047913674

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23770808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Kwang-Su", 
        "id": "sg:person.01206731747.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA", 
            "Present address: TDK-Headway Technologies, 463 S. Milpitas Boulevard, Milpitas, California 95035, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Luc", 
        "id": "sg:person.01011555363.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "See-Hun", 
        "id": "sg:person.01313617512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart", 
        "id": "sg:person.07706243232.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812456", 
          "https://doi.org/10.1038/nmat3553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.083001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012573250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027249833", 
          "https://doi.org/10.1038/nnano.2013.145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029974002", 
          "https://doi.org/10.1038/nmat3522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4733674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3590713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.157201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.157201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2003.811807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979209061986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062936839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.5.093006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063032061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2013.102", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Chiral spin torque at magnetic domain walls", 
    "pagination": "527-533", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e43fd9f1945c31aaf1dbe85d7afde849cf34f3327f13a4eb1046ea2f6f9eb705"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23770808"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.102"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047913674"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.102", 
      "https://app.dimensions.ai/details/publication/pub.1047913674"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v8/n7/full/nnano.2013.102.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.102 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9d0e3d57b74c441881c35850b0e2d9f3
4 schema:citation sg:pub.10.1038/nature05093
5 sg:pub.10.1038/nature10309
6 sg:pub.10.1038/nmat2613
7 sg:pub.10.1038/nmat3020
8 sg:pub.10.1038/nmat3522
9 sg:pub.10.1038/nmat3553
10 sg:pub.10.1038/nnano.2013.145
11 https://doi.org/10.1016/0304-8853(96)00062-5
12 https://doi.org/10.1063/1.333530
13 https://doi.org/10.1063/1.3590713
14 https://doi.org/10.1063/1.4733674
15 https://doi.org/10.1103/physrev.120.91
16 https://doi.org/10.1103/physrevb.33.1572
17 https://doi.org/10.1103/physrevb.75.104431
18 https://doi.org/10.1103/physrevb.78.140403
19 https://doi.org/10.1103/physrevb.78.212405
20 https://doi.org/10.1103/physrevb.79.094422
21 https://doi.org/10.1103/physrevb.85.180404
22 https://doi.org/10.1103/physrevb.87.020402
23 https://doi.org/10.1103/physrevlett.103.157201
24 https://doi.org/10.1103/physrevlett.109.096602
25 https://doi.org/10.1103/physrevlett.83.1834
26 https://doi.org/10.1103/physrevlett.87.037203
27 https://doi.org/10.1109/jproc.2003.811807
28 https://doi.org/10.1126/science.1145799
29 https://doi.org/10.1142/s0217979209061986
30 https://doi.org/10.1143/apex.3.083001
31 https://doi.org/10.1143/apex.5.093006
32 https://doi.org/10.1209/0295-5075/100/57002
33 https://doi.org/10.1209/epl/i2004-10452-6
34 schema:datePublished 2013-07
35 schema:datePublishedReg 2013-07-01
36 schema:description Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N52f8545822af49eaa41d208c6419c176
41 N53a74faf53b94d2282a7913b78d37650
42 sg:journal.1037429
43 schema:name Chiral spin torque at magnetic domain walls
44 schema:pagination 527-533
45 schema:productId N1400ae665d124ec48766d38c7c007a3b
46 N2e880dc2dfce4487bb1a73482efa248a
47 N34d0723972664edf888dc4080fb48f24
48 N5e7cd7e494cb4b5e93b6422d2265d486
49 Nb6d3f69acc4f43389c09f8e37b917a8a
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
51 https://doi.org/10.1038/nnano.2013.102
52 schema:sdDatePublished 2019-04-10T21:25
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf0d9a1b79822494dba28be022809708b
55 schema:url http://www.nature.com/nnano/journal/v8/n7/full/nnano.2013.102.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1400ae665d124ec48766d38c7c007a3b schema:name pubmed_id
60 schema:value 23770808
61 rdf:type schema:PropertyValue
62 N2e880dc2dfce4487bb1a73482efa248a schema:name doi
63 schema:value 10.1038/nnano.2013.102
64 rdf:type schema:PropertyValue
65 N34d0723972664edf888dc4080fb48f24 schema:name dimensions_id
66 schema:value pub.1047913674
67 rdf:type schema:PropertyValue
68 N47db21724d204ee29ce34ffa00ce034f rdf:first sg:person.01313617512.58
69 rdf:rest Neb9fd23fd98746b6ac3168c430699530
70 N52f8545822af49eaa41d208c6419c176 schema:volumeNumber 8
71 rdf:type schema:PublicationVolume
72 N53a74faf53b94d2282a7913b78d37650 schema:issueNumber 7
73 rdf:type schema:PublicationIssue
74 N5e7cd7e494cb4b5e93b6422d2265d486 schema:name nlm_unique_id
75 schema:value 101283273
76 rdf:type schema:PropertyValue
77 N922153b9af414ff6b8fef7bd2dbc58dd rdf:first sg:person.01011555363.08
78 rdf:rest N47db21724d204ee29ce34ffa00ce034f
79 N9d0e3d57b74c441881c35850b0e2d9f3 rdf:first sg:person.01206731747.21
80 rdf:rest N922153b9af414ff6b8fef7bd2dbc58dd
81 Nb6d3f69acc4f43389c09f8e37b917a8a schema:name readcube_id
82 schema:value e43fd9f1945c31aaf1dbe85d7afde849cf34f3327f13a4eb1046ea2f6f9eb705
83 rdf:type schema:PropertyValue
84 Neb9fd23fd98746b6ac3168c430699530 rdf:first sg:person.07706243232.47
85 rdf:rest rdf:nil
86 Nf0d9a1b79822494dba28be022809708b schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1037429 schema:issn 1748-3387
95 1748-3395
96 schema:name Nature Nanotechnology
97 rdf:type schema:Periodical
98 sg:person.01011555363.08 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
99 schema:familyName Thomas
100 schema:givenName Luc
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08
102 rdf:type schema:Person
103 sg:person.01206731747.21 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
104 schema:familyName Ryu
105 schema:givenName Kwang-Su
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21
107 rdf:type schema:Person
108 sg:person.01313617512.58 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
109 schema:familyName Yang
110 schema:givenName See-Hun
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58
112 rdf:type schema:Person
113 sg:person.07706243232.47 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
114 schema:familyName Parkin
115 schema:givenName Stuart
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47
117 rdf:type schema:Person
118 sg:pub.10.1038/nature05093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044280391
119 https://doi.org/10.1038/nature05093
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
122 https://doi.org/10.1038/nature10309
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
125 https://doi.org/10.1038/nmat2613
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
128 https://doi.org/10.1038/nmat3020
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat3522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029974002
131 https://doi.org/10.1038/nmat3522
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat3553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812456
134 https://doi.org/10.1038/nmat3553
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nnano.2013.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027249833
137 https://doi.org/10.1038/nnano.2013.145
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.3590713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980562
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.4733674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233162
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.33.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539246
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.75.104431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620426
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.78.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032728699
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.78.212405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626740
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.79.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627606
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.85.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044572400
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.103.157201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756120
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.109.096602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455943
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.83.1834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534138
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.87.037203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823431
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/jproc.2003.811807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296111
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1142/s0217979209061986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062936839
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/apex.3.083001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012573250
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1143/apex.5.093006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063032061
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
186 schema:name IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA
187 Present address: TDK-Headway Technologies, 463 S. Milpitas Boulevard, Milpitas, California 95035, USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...