Chiral spin torque at magnetic domain walls View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Kwang-Su Ryu, Luc Thomas, See-Hun Yang, Stuart Parkin

ABSTRACT

Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. More... »

PAGES

527-533

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.102

DOI

http://dx.doi.org/10.1038/nnano.2013.102

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047913674

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23770808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Kwang-Su", 
        "id": "sg:person.01206731747.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA", 
            "Present address: TDK-Headway Technologies, 463 S. Milpitas Boulevard, Milpitas, California 95035, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Luc", 
        "id": "sg:person.01011555363.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "See-Hun", 
        "id": "sg:person.01313617512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart", 
        "id": "sg:person.07706243232.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812456", 
          "https://doi.org/10.1038/nmat3553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.083001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012573250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027249833", 
          "https://doi.org/10.1038/nnano.2013.145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029974002", 
          "https://doi.org/10.1038/nmat3522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4733674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3590713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.157201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.157201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2003.811807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979209061986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062936839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.5.093006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063032061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2013.102", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Chiral spin torque at magnetic domain walls", 
    "pagination": "527-533", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e43fd9f1945c31aaf1dbe85d7afde849cf34f3327f13a4eb1046ea2f6f9eb705"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23770808"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.102"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047913674"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.102", 
      "https://app.dimensions.ai/details/publication/pub.1047913674"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nnano/journal/v8/n7/full/nnano.2013.102.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.102'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.102 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc316611a69674535b0680a8d1abbc6c8
4 schema:citation sg:pub.10.1038/nature05093
5 sg:pub.10.1038/nature10309
6 sg:pub.10.1038/nmat2613
7 sg:pub.10.1038/nmat3020
8 sg:pub.10.1038/nmat3522
9 sg:pub.10.1038/nmat3553
10 sg:pub.10.1038/nnano.2013.145
11 https://doi.org/10.1016/0304-8853(96)00062-5
12 https://doi.org/10.1063/1.333530
13 https://doi.org/10.1063/1.3590713
14 https://doi.org/10.1063/1.4733674
15 https://doi.org/10.1103/physrev.120.91
16 https://doi.org/10.1103/physrevb.33.1572
17 https://doi.org/10.1103/physrevb.75.104431
18 https://doi.org/10.1103/physrevb.78.140403
19 https://doi.org/10.1103/physrevb.78.212405
20 https://doi.org/10.1103/physrevb.79.094422
21 https://doi.org/10.1103/physrevb.85.180404
22 https://doi.org/10.1103/physrevb.87.020402
23 https://doi.org/10.1103/physrevlett.103.157201
24 https://doi.org/10.1103/physrevlett.109.096602
25 https://doi.org/10.1103/physrevlett.83.1834
26 https://doi.org/10.1103/physrevlett.87.037203
27 https://doi.org/10.1109/jproc.2003.811807
28 https://doi.org/10.1126/science.1145799
29 https://doi.org/10.1142/s0217979209061986
30 https://doi.org/10.1143/apex.3.083001
31 https://doi.org/10.1143/apex.5.093006
32 https://doi.org/10.1209/0295-5075/100/57002
33 https://doi.org/10.1209/epl/i2004-10452-6
34 schema:datePublished 2013-07
35 schema:datePublishedReg 2013-07-01
36 schema:description Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N8d21b4269708414d96e2298765461986
41 Na98606b867e141c4b0dd892cad1a767f
42 sg:journal.1037429
43 schema:name Chiral spin torque at magnetic domain walls
44 schema:pagination 527-533
45 schema:productId N39e7badd33a54c9787d0c728f3d27ecc
46 N3dde21f9c364437eb666ba5aa3203e17
47 N6c499afd5e3b4effb724d26eeeabf9e1
48 Nbd3bdbbc69e5491fa57a20a9aeaf5b00
49 Nf98e2752c7d2490e905fb571c733f90b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
51 https://doi.org/10.1038/nnano.2013.102
52 schema:sdDatePublished 2019-04-10T21:25
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N4c714723ee7f448486e14bd22f77bda7
55 schema:url http://www.nature.com/nnano/journal/v8/n7/full/nnano.2013.102.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N134bf14b68f54655bac0c720c8a620a6 rdf:first sg:person.01011555363.08
60 rdf:rest N826b77adc5034ad8a81aea93e122b2cc
61 N39e7badd33a54c9787d0c728f3d27ecc schema:name pubmed_id
62 schema:value 23770808
63 rdf:type schema:PropertyValue
64 N3dde21f9c364437eb666ba5aa3203e17 schema:name readcube_id
65 schema:value e43fd9f1945c31aaf1dbe85d7afde849cf34f3327f13a4eb1046ea2f6f9eb705
66 rdf:type schema:PropertyValue
67 N4c714723ee7f448486e14bd22f77bda7 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N6c499afd5e3b4effb724d26eeeabf9e1 schema:name dimensions_id
70 schema:value pub.1047913674
71 rdf:type schema:PropertyValue
72 N7750b7f038244e71a7e0ef1c7f9697aa rdf:first sg:person.07706243232.47
73 rdf:rest rdf:nil
74 N826b77adc5034ad8a81aea93e122b2cc rdf:first sg:person.01313617512.58
75 rdf:rest N7750b7f038244e71a7e0ef1c7f9697aa
76 N8d21b4269708414d96e2298765461986 schema:issueNumber 7
77 rdf:type schema:PublicationIssue
78 Na98606b867e141c4b0dd892cad1a767f schema:volumeNumber 8
79 rdf:type schema:PublicationVolume
80 Nbd3bdbbc69e5491fa57a20a9aeaf5b00 schema:name doi
81 schema:value 10.1038/nnano.2013.102
82 rdf:type schema:PropertyValue
83 Nc316611a69674535b0680a8d1abbc6c8 rdf:first sg:person.01206731747.21
84 rdf:rest N134bf14b68f54655bac0c720c8a620a6
85 Nf98e2752c7d2490e905fb571c733f90b schema:name nlm_unique_id
86 schema:value 101283273
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1037429 schema:issn 1748-3387
95 1748-3395
96 schema:name Nature Nanotechnology
97 rdf:type schema:Periodical
98 sg:person.01011555363.08 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
99 schema:familyName Thomas
100 schema:givenName Luc
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08
102 rdf:type schema:Person
103 sg:person.01206731747.21 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
104 schema:familyName Ryu
105 schema:givenName Kwang-Su
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21
107 rdf:type schema:Person
108 sg:person.01313617512.58 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
109 schema:familyName Yang
110 schema:givenName See-Hun
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58
112 rdf:type schema:Person
113 sg:person.07706243232.47 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
114 schema:familyName Parkin
115 schema:givenName Stuart
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47
117 rdf:type schema:Person
118 sg:pub.10.1038/nature05093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044280391
119 https://doi.org/10.1038/nature05093
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
122 https://doi.org/10.1038/nature10309
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
125 https://doi.org/10.1038/nmat2613
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
128 https://doi.org/10.1038/nmat3020
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat3522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029974002
131 https://doi.org/10.1038/nmat3522
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat3553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812456
134 https://doi.org/10.1038/nmat3553
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nnano.2013.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027249833
137 https://doi.org/10.1038/nnano.2013.145
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.3590713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980562
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.4733674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233162
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.33.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539246
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.75.104431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620426
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.78.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032728699
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.78.212405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626740
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.79.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627606
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.85.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044572400
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.103.157201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756120
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.109.096602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455943
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.83.1834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534138
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.87.037203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823431
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/jproc.2003.811807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296111
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1142/s0217979209061986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062936839
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/apex.3.083001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012573250
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1143/apex.5.093006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063032061
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
186 schema:name IBM Almaden Research Center, 650 Harry Road, San Jose, 95120 California, USA
187 Present address: TDK-Headway Technologies, 463 S. Milpitas Boulevard, Milpitas, California 95035, USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...