Ultrasensitive photodetectors based on monolayer MoS2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-09

AUTHORS

Oriol Lopez-Sanchez, Dominik Lembke, Metin Kayci, Aleksandra Radenovic, Andras Kis

ABSTRACT

Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene1 is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3, 4) or WSe2 (refs 5, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor7,8 due to quantum-mechanical confinement7,9,10, it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron–hole pair generation under photoexcitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880 A W−1 at a wavelength of 561 nm and a photoresponse in the 400–680 nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation11,12,13 and chemical vapour deposition-like growth14,15, MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy. More... »

PAGES

497-501

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2013.100

DOI

http://dx.doi.org/10.1038/nnano.2013.100

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023181230

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23748194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disulfides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molybdenum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semiconductors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Sanchez", 
        "givenName": "Oriol", 
        "id": "sg:person.01304537027.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304537027.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lembke", 
        "givenName": "Dominik", 
        "id": "sg:person.0617717456.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617717456.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayci", 
        "givenName": "Metin", 
        "id": "sg:person.0627246127.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627246127.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radenovic", 
        "givenName": "Aleksandra", 
        "id": "sg:person.0773042235.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kis", 
        "givenName": "Andras", 
        "id": "sg:person.0731604571.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016682805", 
          "https://doi.org/10.1038/nmat3256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006827577", 
          "https://doi.org/10.1038/nphoton.2010.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007762915", 
          "https://doi.org/10.1038/nnano.2009.292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029499740", 
          "https://doi.org/10.1038/nnano.2012.60"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-09", 
    "datePublishedReg": "2013-06-09", 
    "description": "Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene1 is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref.\u00a02) and semiconducting MoS2 (refs\u00a03, 4) or WSe2 (refs\u00a05, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor7,8 due to quantum-mechanical confinement7,9,10, it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron\u2013hole pair generation under photoexcitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880\u00a0A\u00a0W\u22121 at a wavelength of 561\u00a0nm and a photoresponse in the 400\u2013680\u00a0nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation11,12,13 and chemical vapour deposition-like growth14,15, MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nnano.2013.100", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3784234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3779198", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "two-dimensional materials", 
      "monolayer MoS2", 
      "large-scale production techniques", 
      "electron-hole pair generation", 
      "high absorption coefficient", 
      "field-effect transistors", 
      "optoelectronic circuits", 
      "ultrasensitive photodetectors", 
      "semiconducting MoS2", 
      "MoS2 phototransistor", 
      "optoelectronic devices", 
      "pair generation", 
      "channel material", 
      "direct bandgap", 
      "device mobility", 
      "absorption coefficient", 
      "potential practical applications", 
      "biomedical imaging", 
      "gate insulator", 
      "MoS2", 
      "chemical vapor", 
      "electrical properties", 
      "single layer", 
      "practical applications", 
      "production techniques", 
      "new materials", 
      "devices", 
      "photoresponsivity", 
      "WSe2", 
      "photodetectors", 
      "applications", 
      "phototransistors", 
      "photoexcitation", 
      "insulator", 
      "bandgap", 
      "wavelength", 
      "photoresponse", 
      "recent developments", 
      "transistors", 
      "materials", 
      "BN", 
      "spectroscopy", 
      "important potential", 
      "circuit", 
      "wide range", 
      "range", 
      "layer", 
      "vapor", 
      "current", 
      "mobility", 
      "imaging", 
      "properties", 
      "class", 
      "technique", 
      "generation", 
      "potential", 
      "coefficient", 
      "attention", 
      "development", 
      "video recordings", 
      "recordings", 
      "graphene1", 
      "promising gate insulators", 
      "efficient electron\u2013hole pair generation", 
      "ultrasensitive monolayer MoS2 phototransistors", 
      "monolayer MoS2 phototransistors", 
      "improved device mobility", 
      "maximum external photoresponsivity", 
      "external photoresponsivity"
    ], 
    "name": "Ultrasensitive photodetectors based on monolayer MoS2", 
    "pagination": "497-501", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023181230"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2013.100"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23748194"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2013.100", 
      "https://app.dimensions.ai/details/publication/pub.1023181230"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_614.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nnano.2013.100"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.100'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.100'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.100'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2013.100'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      110 URIs      94 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2013.100 schema:about N10e441d2586747a9bbf06a6569f4a280
2 N26a0598e48eb4a1c81ffe1f20f692421
3 N2a19ae7f73ac4f7ab772fcff054ca1fc
4 N6892a873afa34f198437530fb150673e
5 N6c2745328bca4897b1377693d7aeb3c3
6 N82e0f4b5fb8a4e76a96d36929bceb4f6
7 Ndffe800db7c14f3591b71026592b0fda
8 anzsrc-for:02
9 anzsrc-for:0299
10 anzsrc-for:09
11 anzsrc-for:0912
12 schema:author Nbfee58b52fcf437ca13c4b0e0ae2de21
13 schema:citation sg:pub.10.1038/nmat3256
14 sg:pub.10.1038/nnano.2009.292
15 sg:pub.10.1038/nnano.2010.172
16 sg:pub.10.1038/nnano.2010.279
17 sg:pub.10.1038/nnano.2012.60
18 sg:pub.10.1038/nphoton.2010.40
19 schema:datePublished 2013-06-09
20 schema:datePublishedReg 2013-06-09
21 schema:description Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene1 is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3, 4) or WSe2 (refs 5, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor7,8 due to quantum-mechanical confinement7,9,10, it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron–hole pair generation under photoexcitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880 A W−1 at a wavelength of 561 nm and a photoresponse in the 400–680 nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation11,12,13 and chemical vapour deposition-like growth14,15, MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N7159f4ca75044b6490d83fe4cd7c8ee3
26 Nf6cc5793e52241ca944d7f8904054f62
27 sg:journal.1037429
28 schema:keywords BN
29 MoS2
30 MoS2 phototransistor
31 WSe2
32 absorption coefficient
33 applications
34 attention
35 bandgap
36 biomedical imaging
37 channel material
38 chemical vapor
39 circuit
40 class
41 coefficient
42 current
43 development
44 device mobility
45 devices
46 direct bandgap
47 efficient electron–hole pair generation
48 electrical properties
49 electron-hole pair generation
50 external photoresponsivity
51 field-effect transistors
52 gate insulator
53 generation
54 graphene1
55 high absorption coefficient
56 imaging
57 important potential
58 improved device mobility
59 insulator
60 large-scale production techniques
61 layer
62 materials
63 maximum external photoresponsivity
64 mobility
65 monolayer MoS2
66 monolayer MoS2 phototransistors
67 new materials
68 optoelectronic circuits
69 optoelectronic devices
70 pair generation
71 photodetectors
72 photoexcitation
73 photoresponse
74 photoresponsivity
75 phototransistors
76 potential
77 potential practical applications
78 practical applications
79 production techniques
80 promising gate insulators
81 properties
82 range
83 recent developments
84 recordings
85 semiconducting MoS2
86 single layer
87 spectroscopy
88 technique
89 transistors
90 two-dimensional materials
91 ultrasensitive monolayer MoS2 phototransistors
92 ultrasensitive photodetectors
93 vapor
94 video recordings
95 wavelength
96 wide range
97 schema:name Ultrasensitive photodetectors based on monolayer MoS2
98 schema:pagination 497-501
99 schema:productId N29825b662ae54595bd56c8a4a109b461
100 N7cb673e4767b4b43a7ef2f9ae5b288e5
101 Nd131c154808d458d8caf581f8c20d16a
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023181230
103 https://doi.org/10.1038/nnano.2013.100
104 schema:sdDatePublished 2021-12-01T19:30
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nf4d9487b2ac043048423b4729f2686e0
107 schema:url https://doi.org/10.1038/nnano.2013.100
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N10e441d2586747a9bbf06a6569f4a280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Molybdenum
113 rdf:type schema:DefinedTerm
114 N26a0598e48eb4a1c81ffe1f20f692421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Photometry
116 rdf:type schema:DefinedTerm
117 N29825b662ae54595bd56c8a4a109b461 schema:name doi
118 schema:value 10.1038/nnano.2013.100
119 rdf:type schema:PropertyValue
120 N2a19ae7f73ac4f7ab772fcff054ca1fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Nanostructures
122 rdf:type schema:DefinedTerm
123 N54e2b6399da2494898c01cf85711e2e0 rdf:first sg:person.0773042235.60
124 rdf:rest Nb3717c0a3a6e40d6b8b6dd5940b17247
125 N6892a873afa34f198437530fb150673e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Semiconductors
127 rdf:type schema:DefinedTerm
128 N6c2745328bca4897b1377693d7aeb3c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Light
130 rdf:type schema:DefinedTerm
131 N7159f4ca75044b6490d83fe4cd7c8ee3 schema:volumeNumber 8
132 rdf:type schema:PublicationVolume
133 N7b1068369f164c9fbd4c353ed7c9d03b rdf:first sg:person.0627246127.22
134 rdf:rest N54e2b6399da2494898c01cf85711e2e0
135 N7cb673e4767b4b43a7ef2f9ae5b288e5 schema:name pubmed_id
136 schema:value 23748194
137 rdf:type schema:PropertyValue
138 N82e0f4b5fb8a4e76a96d36929bceb4f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Disulfides
140 rdf:type schema:DefinedTerm
141 N9879167faffe41d4a636cd2e29f5d7c7 rdf:first sg:person.0617717456.36
142 rdf:rest N7b1068369f164c9fbd4c353ed7c9d03b
143 Nb3717c0a3a6e40d6b8b6dd5940b17247 rdf:first sg:person.0731604571.13
144 rdf:rest rdf:nil
145 Nbfee58b52fcf437ca13c4b0e0ae2de21 rdf:first sg:person.01304537027.46
146 rdf:rest N9879167faffe41d4a636cd2e29f5d7c7
147 Nd131c154808d458d8caf581f8c20d16a schema:name dimensions_id
148 schema:value pub.1023181230
149 rdf:type schema:PropertyValue
150 Ndffe800db7c14f3591b71026592b0fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Equipment Design
152 rdf:type schema:DefinedTerm
153 Nf4d9487b2ac043048423b4729f2686e0 schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 Nf6cc5793e52241ca944d7f8904054f62 schema:issueNumber 7
156 rdf:type schema:PublicationIssue
157 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
158 schema:name Physical Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
161 schema:name Other Physical Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
164 schema:name Engineering
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
167 schema:name Materials Engineering
168 rdf:type schema:DefinedTerm
169 sg:grant.3779198 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.100
170 rdf:type schema:MonetaryGrant
171 sg:grant.3784234 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2013.100
172 rdf:type schema:MonetaryGrant
173 sg:journal.1037429 schema:issn 1748-3387
174 1748-3395
175 schema:name Nature Nanotechnology
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01304537027.46 schema:affiliation grid-institutes:grid.5333.6
179 schema:familyName Lopez-Sanchez
180 schema:givenName Oriol
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304537027.46
182 rdf:type schema:Person
183 sg:person.0617717456.36 schema:affiliation grid-institutes:grid.5333.6
184 schema:familyName Lembke
185 schema:givenName Dominik
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617717456.36
187 rdf:type schema:Person
188 sg:person.0627246127.22 schema:affiliation grid-institutes:grid.5333.6
189 schema:familyName Kayci
190 schema:givenName Metin
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627246127.22
192 rdf:type schema:Person
193 sg:person.0731604571.13 schema:affiliation grid-institutes:grid.5333.6
194 schema:familyName Kis
195 schema:givenName Andras
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13
197 rdf:type schema:Person
198 sg:person.0773042235.60 schema:affiliation grid-institutes:grid.5333.6
199 schema:familyName Radenovic
200 schema:givenName Aleksandra
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60
202 rdf:type schema:Person
203 sg:pub.10.1038/nmat3256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016682805
204 https://doi.org/10.1038/nmat3256
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nnano.2009.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007762915
207 https://doi.org/10.1038/nnano.2009.292
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
210 https://doi.org/10.1038/nnano.2010.172
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
213 https://doi.org/10.1038/nnano.2010.279
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nnano.2012.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029499740
216 https://doi.org/10.1038/nnano.2012.60
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nphoton.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827577
219 https://doi.org/10.1038/nphoton.2010.40
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.5333.6 schema:alternateName Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
222 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
223 schema:name Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
224 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...