Control of valley polarization in monolayer MoS2 by optical helicity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-06-17

AUTHORS

Kin Fai Mak, Keliang He, Jie Shan, Tony F. Heinz

ABSTRACT

Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more minima in the conduction band (or maxima in the valence band) in momentum space, and if it is possible to confine charge carriers in one of these valleys, then it should be possible to make a valleytronic device1,2,3,4. Valley polarization, as the selective population of one valley is designated, has been demonstrated using strain5,6 and magnetic fields7,8,9,10, but neither of these approaches allows dynamic control. Here, we demonstrate that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS2 (refs 11, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys13,14,15,16. Moreover, this polarization is retained for longer than 1 ns. Our results, and similar results by Zeng et al.17, demonstrate the viability of optical valley control and suggest the possibility of valley-based electronic and optoelectronic applications in MoS2 monolayers. More... »

PAGES

494-498

References to SciGraph publications

  • 2010-08-22. Boron nitride substrates for high-quality graphene electronics in NATURE NANOTECHNOLOGY
  • 2011-10-16. Field-induced polarization of Dirac valleys in bismuth in NATURE PHYSICS
  • 2008. Spin Physics in Semiconductors in NONE
  • 2007-02-18. Valley filter and valley valve in graphene in NATURE PHYSICS
  • 2012-06-17. Valley polarization in MoS2 monolayers by optical pumping in NATURE NANOTECHNOLOGY
  • 2011-01-30. Single-layer MoS2 transistors in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2012.96

    DOI

    http://dx.doi.org/10.1038/nnano.2012.96

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038550073

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22706698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electronics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Luminescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molybdenum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Optical Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Optics and Photonics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantum Dots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mak", 
            "givenName": "Kin Fai", 
            "id": "sg:person.01005504116.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005504116.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Keliang", 
            "id": "sg:person.0641223730.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641223730.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shan", 
            "givenName": "Jie", 
            "id": "sg:person.01037737316.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037737316.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heinz", 
            "givenName": "Tony F.", 
            "id": "sg:person.01257703457.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257703457.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027885336", 
              "https://doi.org/10.1038/nphys547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78820-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011586342", 
              "https://doi.org/10.1007/978-3-540-78820-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704758", 
              "https://doi.org/10.1038/nnano.2010.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017332647", 
              "https://doi.org/10.1038/nphys2111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952436", 
              "https://doi.org/10.1038/nnano.2012.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-06-17", 
        "datePublishedReg": "2012-06-17", 
        "description": "Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more minima in the conduction band (or maxima in the valence band) in momentum space, and if it is possible to confine charge carriers in one of these valleys, then it should be possible to make a valleytronic device1,2,3,4. Valley polarization, as the selective population of one valley is designated, has been demonstrated using strain5,6 and magnetic fields7,8,9,10, but neither of these approaches allows dynamic control. Here, we demonstrate that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS2 (refs\u00a011, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys13,14,15,16. Moreover, this polarization is retained for longer than 1\u00a0ns. Our results, and similar results by Zeng et al.17, demonstrate the viability of optical valley control and suggest the possibility of valley-based electronic and optoelectronic applications in MoS2 monolayers.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3125146", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8691818", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3100440", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "valley polarization", 
          "monolayer MoS2", 
          "charge carriers", 
          "direct energy gap", 
          "non-centrosymmetric crystals", 
          "free charge carriers", 
          "optical helicity", 
          "valley control", 
          "momentum space", 
          "MoS2 monolayer", 
          "spintronic devices", 
          "optoelectronic applications", 
          "energy gap", 
          "conduction band", 
          "selective population", 
          "electric charge", 
          "polarization", 
          "more minima", 
          "MoS2", 
          "valleytronics", 
          "spin", 
          "devices", 
          "helicity", 
          "dynamic control", 
          "carriers", 
          "ns", 
          "crystals", 
          "monolayers", 
          "band", 
          "light", 
          "charge", 
          "gap", 
          "solids", 
          "properties", 
          "al", 
          "new family", 
          "minimum", 
          "possibility", 
          "space", 
          "Valley", 
          "applications", 
          "results", 
          "Zeng", 
          "control", 
          "similar results", 
          "approach", 
          "fact", 
          "family", 
          "population", 
          "viability", 
          "complete dynamic valley polarization", 
          "dynamic valley polarization", 
          "two-dimensional non-centrosymmetric crystal", 
          "optical valley control", 
          "possibility of valley"
        ], 
        "name": "Control of valley polarization in monolayer MoS2 by optical helicity", 
        "pagination": "494-498", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038550073"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2012.96"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22706698"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2012.96", 
          "https://app.dimensions.ai/details/publication/pub.1038550073"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_564.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2012.96"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.96'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.96'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.96'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.96'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      22 PREDICATES      94 URIs      80 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2012.96 schema:about N07dffbe358974b5ebce80817dce22547
    2 N2bd650d086e84e4fa5fb7929c10889ca
    3 N49215d5cc2904026861a698522519779
    4 N84b5c049a4494b83ae191fb2690b465d
    5 Nbfc691680c3743b9abfe46a3495b39f6
    6 Ne3813122fdba46f4a7d3884ae1200ba5
    7 Nef124c5f7af8478cb2640c545354157c
    8 anzsrc-for:09
    9 anzsrc-for:0912
    10 schema:author N49036f70a4aa4b6dbdfa9e981014892b
    11 schema:citation sg:pub.10.1007/978-3-540-78820-1
    12 sg:pub.10.1038/nnano.2010.172
    13 sg:pub.10.1038/nnano.2010.279
    14 sg:pub.10.1038/nnano.2012.95
    15 sg:pub.10.1038/nphys2111
    16 sg:pub.10.1038/nphys547
    17 schema:datePublished 2012-06-17
    18 schema:datePublishedReg 2012-06-17
    19 schema:description Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more minima in the conduction band (or maxima in the valence band) in momentum space, and if it is possible to confine charge carriers in one of these valleys, then it should be possible to make a valleytronic device1,2,3,4. Valley polarization, as the selective population of one valley is designated, has been demonstrated using strain5,6 and magnetic fields7,8,9,10, but neither of these approaches allows dynamic control. Here, we demonstrate that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS2 (refs 11, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys13,14,15,16. Moreover, this polarization is retained for longer than 1 ns. Our results, and similar results by Zeng et al.17, demonstrate the viability of optical valley control and suggest the possibility of valley-based electronic and optoelectronic applications in MoS2 monolayers.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf Nf71ce2095f0c41e990df4bc44576878b
    24 Nfb85abbb8ac64e0b97248f8ff61bbddb
    25 sg:journal.1037429
    26 schema:keywords MoS2
    27 MoS2 monolayer
    28 Valley
    29 Zeng
    30 al
    31 applications
    32 approach
    33 band
    34 carriers
    35 charge
    36 charge carriers
    37 complete dynamic valley polarization
    38 conduction band
    39 control
    40 crystals
    41 devices
    42 direct energy gap
    43 dynamic control
    44 dynamic valley polarization
    45 electric charge
    46 energy gap
    47 fact
    48 family
    49 free charge carriers
    50 gap
    51 helicity
    52 light
    53 minimum
    54 momentum space
    55 monolayer MoS2
    56 monolayers
    57 more minima
    58 new family
    59 non-centrosymmetric crystals
    60 ns
    61 optical helicity
    62 optical valley control
    63 optoelectronic applications
    64 polarization
    65 population
    66 possibility
    67 possibility of valley
    68 properties
    69 results
    70 selective population
    71 similar results
    72 solids
    73 space
    74 spin
    75 spintronic devices
    76 two-dimensional non-centrosymmetric crystal
    77 valley control
    78 valley polarization
    79 valleytronics
    80 viability
    81 schema:name Control of valley polarization in monolayer MoS2 by optical helicity
    82 schema:pagination 494-498
    83 schema:productId N31db3434d8c94685b7b08b2a36aae7c0
    84 N9baa2c01aeed490688279b16095139b3
    85 Nf577647507db402bb398afc2c616df67
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
    87 https://doi.org/10.1038/nnano.2012.96
    88 schema:sdDatePublished 2021-12-01T19:27
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N26cc39d47ad44e3aa57cd9eb05686f8d
    91 schema:url https://doi.org/10.1038/nnano.2012.96
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N07dffbe358974b5ebce80817dce22547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Luminescence
    97 rdf:type schema:DefinedTerm
    98 N26cc39d47ad44e3aa57cd9eb05686f8d schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N2bd650d086e84e4fa5fb7929c10889ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Quantum Dots
    102 rdf:type schema:DefinedTerm
    103 N2eb47b83d4274b0abe907221ae7bfd98 rdf:first sg:person.01037737316.13
    104 rdf:rest N5dfbcd6d0c8945e89250dc0d2893b3a0
    105 N31db3434d8c94685b7b08b2a36aae7c0 schema:name doi
    106 schema:value 10.1038/nnano.2012.96
    107 rdf:type schema:PropertyValue
    108 N49036f70a4aa4b6dbdfa9e981014892b rdf:first sg:person.01005504116.00
    109 rdf:rest Nf6c836bb6c6f4b68817a6c5f94ea8785
    110 N49215d5cc2904026861a698522519779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Optical Phenomena
    112 rdf:type schema:DefinedTerm
    113 N5dfbcd6d0c8945e89250dc0d2893b3a0 rdf:first sg:person.01257703457.74
    114 rdf:rest rdf:nil
    115 N84b5c049a4494b83ae191fb2690b465d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Molybdenum
    117 rdf:type schema:DefinedTerm
    118 N9baa2c01aeed490688279b16095139b3 schema:name pubmed_id
    119 schema:value 22706698
    120 rdf:type schema:PropertyValue
    121 Nbfc691680c3743b9abfe46a3495b39f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Electronics
    123 rdf:type schema:DefinedTerm
    124 Ne3813122fdba46f4a7d3884ae1200ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Semiconductors
    126 rdf:type schema:DefinedTerm
    127 Nef124c5f7af8478cb2640c545354157c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Optics and Photonics
    129 rdf:type schema:DefinedTerm
    130 Nf577647507db402bb398afc2c616df67 schema:name dimensions_id
    131 schema:value pub.1038550073
    132 rdf:type schema:PropertyValue
    133 Nf6c836bb6c6f4b68817a6c5f94ea8785 rdf:first sg:person.0641223730.49
    134 rdf:rest N2eb47b83d4274b0abe907221ae7bfd98
    135 Nf71ce2095f0c41e990df4bc44576878b schema:issueNumber 8
    136 rdf:type schema:PublicationIssue
    137 Nfb85abbb8ac64e0b97248f8ff61bbddb schema:volumeNumber 7
    138 rdf:type schema:PublicationVolume
    139 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Engineering
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Materials Engineering
    144 rdf:type schema:DefinedTerm
    145 sg:grant.3100440 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2012.96
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.3125146 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2012.96
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.8691818 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2012.96
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1037429 schema:issn 1748-3387
    152 1748-3395
    153 schema:name Nature Nanotechnology
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.01005504116.00 schema:affiliation grid-institutes:grid.21729.3f
    157 schema:familyName Mak
    158 schema:givenName Kin Fai
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005504116.00
    160 rdf:type schema:Person
    161 sg:person.01037737316.13 schema:affiliation grid-institutes:grid.67105.35
    162 schema:familyName Shan
    163 schema:givenName Jie
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037737316.13
    165 rdf:type schema:Person
    166 sg:person.01257703457.74 schema:affiliation grid-institutes:grid.21729.3f
    167 schema:familyName Heinz
    168 schema:givenName Tony F.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257703457.74
    170 rdf:type schema:Person
    171 sg:person.0641223730.49 schema:affiliation grid-institutes:grid.67105.35
    172 schema:familyName He
    173 schema:givenName Keliang
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641223730.49
    175 rdf:type schema:Person
    176 sg:pub.10.1007/978-3-540-78820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011586342
    177 https://doi.org/10.1007/978-3-540-78820-1
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
    180 https://doi.org/10.1038/nnano.2010.172
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    183 https://doi.org/10.1038/nnano.2010.279
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
    186 https://doi.org/10.1038/nnano.2012.95
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nphys2111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017332647
    189 https://doi.org/10.1038/nphys2111
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nphys547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885336
    192 https://doi.org/10.1038/nphys547
    193 rdf:type schema:CreativeWork
    194 grid-institutes:grid.21729.3f schema:alternateName Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA
    195 schema:name Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, 10027, New York, New York, USA
    196 rdf:type schema:Organization
    197 grid-institutes:grid.67105.35 schema:alternateName Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    198 schema:name Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...