Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02-03

AUTHORS

Marc Ganzhorn, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer

ABSTRACT

Magnetic relaxation processes were first discussed for a crystal of paramagnetic transition ions1. It was suggested that mechanical vibrations of the crystal lattice (phonons) modulate the crystal electric field of the magnetic ion, thus inducing a ‘direct’ relaxation between two different spin states1,2,3. Direct relaxation has also been predicted for single-molecule magnets with a large spin and a high magnetic anisotropy1,4,5,6,7 and was first demonstrated in a Mn12 acetate crystal8. The spin-lattice relaxation time for such a direct transition is limited by the phonon density of states at the spin resonance1. In a three-dimensional system, such as a single-molecule magnet crystal, the phonon energy spectrum is continuous, but in a one-dimensional system, like a suspended carbon nanotube, the spectrum is discrete and can be engineered to an extremely low density of states9. An individual single-molecule magnet, coupled to a suspended carbon nanotube, should therefore exhibit extremely long relaxation times9 and the system's reduced size should result in a strong spin–phonon coupling10,11. Here, we provide the first experimental evidence for a strong spin–phonon coupling between a single molecule spin and a carbon nanotube resonator, ultimately enabling coherent spin manipulation and quantum entanglement10,11. More... »

PAGES

165-169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2012.258

DOI

http://dx.doi.org/10.1038/nnano.2012.258

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040311716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23377456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromagnetic Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes, Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phonons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el, CNRS et Universit\u00e9 Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS et Universit\u00e9 Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganzhorn", 
        "givenName": "Marc", 
        "id": "sg:person.011364045561.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364045561.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klyatskaya", 
        "givenName": "Svetlana", 
        "id": "sg:person.01156154225.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156154225.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique et Chimie des Mat\u00e9riaux de Strasbourg (IPCMS), CNRS-Universit\u00e9 de Strasbourg, 67034, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.461894.6", 
          "name": [
            "Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany", 
            "Institut de Physique et Chimie des Mat\u00e9riaux de Strasbourg (IPCMS), CNRS-Universit\u00e9 de Strasbourg, 67034, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruben", 
        "givenName": "Mario", 
        "id": "sg:person.0625254605.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625254605.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el, CNRS et Universit\u00e9 Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS et Universit\u00e9 Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wernsdorfer", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01065057430.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002841688", 
          "https://doi.org/10.1038/nmat3050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365141a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007450225", 
          "https://doi.org/10.1038/365141a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018128387", 
          "https://doi.org/10.1038/nnano.2008.200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041640333", 
          "https://doi.org/10.1038/nmat2133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015361904", 
          "https://doi.org/10.1038/nature11341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383145a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036610413", 
          "https://doi.org/10.1038/383145a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021562901", 
          "https://doi.org/10.1038/nphys1234"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02-03", 
    "datePublishedReg": "2013-02-03", 
    "description": "Magnetic relaxation processes were first discussed for a crystal of paramagnetic transition ions1. It was suggested that mechanical vibrations of the crystal lattice (phonons) modulate the crystal electric field of the magnetic ion, thus inducing a \u2018direct\u2019 relaxation between two different spin states1,2,3. Direct relaxation has also been predicted for single-molecule magnets with a large spin and a high magnetic anisotropy1,4,5,6,7 and was first demonstrated in a Mn12 acetate crystal8. The spin-lattice relaxation time for such a direct transition is limited by the phonon density of states at the spin resonance1. In a three-dimensional system, such as a single-molecule magnet crystal, the phonon energy spectrum is continuous, but in a one-dimensional system, like a suspended carbon nanotube, the spectrum is discrete and can be engineered to an extremely low density of states9. An individual single-molecule magnet, coupled to a suspended carbon nanotube, should therefore exhibit extremely long relaxation times9 and the system's reduced size should result in a strong spin\u2013phonon coupling10,11. Here, we provide the first experimental evidence for a strong spin\u2013phonon coupling between a single molecule spin and a carbon nanotube resonator, ultimately enabling coherent spin manipulation and quantum entanglement10,11.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nnano.2012.258", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3777111", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "single-molecule magnets", 
      "strong spin-phonon coupling", 
      "spin-phonon coupling", 
      "coherent spin manipulation", 
      "individual single-molecule magnets", 
      "crystal electric field", 
      "magnetic relaxation processes", 
      "phonon energy spectrum", 
      "spin-lattice relaxation time", 
      "spin manipulation", 
      "one-dimensional systems", 
      "energy spectrum", 
      "molecule spin", 
      "magnetic ions", 
      "large spin", 
      "direct transition", 
      "high magnetic", 
      "electric field", 
      "carbon nanotube resonators", 
      "different spins", 
      "phonon density", 
      "spin", 
      "relaxation processes", 
      "three-dimensional systems", 
      "nanoelectromechanical systems", 
      "nanotube resonators", 
      "relaxation time", 
      "first experimental evidence", 
      "magnets", 
      "crystal lattice", 
      "spectra", 
      "coupling", 
      "crystals", 
      "mechanical vibration", 
      "direct relaxation", 
      "quantum", 
      "relaxation", 
      "experimental evidence", 
      "ions1", 
      "resonator", 
      "carbon nanotubes", 
      "low density", 
      "density", 
      "magnetic", 
      "ions", 
      "lattice", 
      "transition", 
      "field", 
      "state", 
      "vibration", 
      "nanotubes", 
      "system", 
      "manipulation", 
      "size", 
      "process", 
      "time", 
      "evidence"
    ], 
    "name": "Strong spin\u2013phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system", 
    "pagination": "165-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040311716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2012.258"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23377456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2012.258", 
      "https://app.dimensions.ai/details/publication/pub.1040311716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nnano.2012.258"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.258'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.258'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.258'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.258'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      96 URIs      81 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2012.258 schema:about N2f47f19ed6524e469bc8536958d46ea1
2 N3779ef49cc014dc8902a38644d02aad0
3 N5a1015f9ef2f430e9c3591d1c1335221
4 N6389c488dac949ac8a3b16f1bc7f632b
5 N64dba231c95d47cfb6a854265f061f19
6 N8d6dd17cb9b742e9b044262a45130526
7 Na220f64429344672b6e9e498df71e6e1
8 anzsrc-for:03
9 anzsrc-for:0306
10 schema:author N7ef17be1818f4523ac1075e9a659eb3e
11 schema:citation sg:pub.10.1038/365141a0
12 sg:pub.10.1038/383145a0
13 sg:pub.10.1038/nature11341
14 sg:pub.10.1038/nmat2133
15 sg:pub.10.1038/nmat3050
16 sg:pub.10.1038/nnano.2008.200
17 sg:pub.10.1038/nphys1234
18 schema:datePublished 2013-02-03
19 schema:datePublishedReg 2013-02-03
20 schema:description Magnetic relaxation processes were first discussed for a crystal of paramagnetic transition ions1. It was suggested that mechanical vibrations of the crystal lattice (phonons) modulate the crystal electric field of the magnetic ion, thus inducing a ‘direct’ relaxation between two different spin states1,2,3. Direct relaxation has also been predicted for single-molecule magnets with a large spin and a high magnetic anisotropy1,4,5,6,7 and was first demonstrated in a Mn12 acetate crystal8. The spin-lattice relaxation time for such a direct transition is limited by the phonon density of states at the spin resonance1. In a three-dimensional system, such as a single-molecule magnet crystal, the phonon energy spectrum is continuous, but in a one-dimensional system, like a suspended carbon nanotube, the spectrum is discrete and can be engineered to an extremely low density of states9. An individual single-molecule magnet, coupled to a suspended carbon nanotube, should therefore exhibit extremely long relaxation times9 and the system's reduced size should result in a strong spin–phonon coupling10,11. Here, we provide the first experimental evidence for a strong spin–phonon coupling between a single molecule spin and a carbon nanotube resonator, ultimately enabling coherent spin manipulation and quantum entanglement10,11.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N1aabb8e83049412fa8d6b7bef7158392
24 Nf3dbeb5d829b49e6a6e8230154df4f01
25 sg:journal.1037429
26 schema:keywords carbon nanotube resonators
27 carbon nanotubes
28 coherent spin manipulation
29 coupling
30 crystal electric field
31 crystal lattice
32 crystals
33 density
34 different spins
35 direct relaxation
36 direct transition
37 electric field
38 energy spectrum
39 evidence
40 experimental evidence
41 field
42 first experimental evidence
43 high magnetic
44 individual single-molecule magnets
45 ions
46 ions1
47 large spin
48 lattice
49 low density
50 magnetic
51 magnetic ions
52 magnetic relaxation processes
53 magnets
54 manipulation
55 mechanical vibration
56 molecule spin
57 nanoelectromechanical systems
58 nanotube resonators
59 nanotubes
60 one-dimensional systems
61 phonon density
62 phonon energy spectrum
63 process
64 quantum
65 relaxation
66 relaxation processes
67 relaxation time
68 resonator
69 single-molecule magnets
70 size
71 spectra
72 spin
73 spin manipulation
74 spin-lattice relaxation time
75 spin-phonon coupling
76 state
77 strong spin-phonon coupling
78 system
79 three-dimensional systems
80 time
81 transition
82 vibration
83 schema:name Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system
84 schema:pagination 165-169
85 schema:productId N428ac17e93134474a801f262a1dcdf65
86 N6f53bd2c288f4f95a6d595b0304ba256
87 Ne78c7a9afcce415d9c0c7f428d48e5a3
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040311716
89 https://doi.org/10.1038/nnano.2012.258
90 schema:sdDatePublished 2022-11-24T20:57
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nfcef7db195194d8396e1e4f30a956d38
93 schema:url https://doi.org/10.1038/nnano.2012.258
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N1007f4dd20534350beaabcb1385e48a9 rdf:first sg:person.0625254605.79
98 rdf:rest N6a9afd8c30fe457291a07e6d9fea5989
99 N1aabb8e83049412fa8d6b7bef7158392 schema:volumeNumber 8
100 rdf:type schema:PublicationVolume
101 N2f47f19ed6524e469bc8536958d46ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Nanotubes, Carbon
103 rdf:type schema:DefinedTerm
104 N3779ef49cc014dc8902a38644d02aad0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Nanotechnology
106 rdf:type schema:DefinedTerm
107 N428ac17e93134474a801f262a1dcdf65 schema:name dimensions_id
108 schema:value pub.1040311716
109 rdf:type schema:PropertyValue
110 N5a1015f9ef2f430e9c3591d1c1335221 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Ions
112 rdf:type schema:DefinedTerm
113 N6389c488dac949ac8a3b16f1bc7f632b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Electromagnetic Fields
115 rdf:type schema:DefinedTerm
116 N64dba231c95d47cfb6a854265f061f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Phonons
118 rdf:type schema:DefinedTerm
119 N6a9afd8c30fe457291a07e6d9fea5989 rdf:first sg:person.01065057430.25
120 rdf:rest rdf:nil
121 N6f53bd2c288f4f95a6d595b0304ba256 schema:name pubmed_id
122 schema:value 23377456
123 rdf:type schema:PropertyValue
124 N7ef17be1818f4523ac1075e9a659eb3e rdf:first sg:person.011364045561.35
125 rdf:rest Nf6f635a243f24ae09350ba43ebf7d877
126 N8d6dd17cb9b742e9b044262a45130526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Magnetics
128 rdf:type schema:DefinedTerm
129 Na220f64429344672b6e9e498df71e6e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 Ne78c7a9afcce415d9c0c7f428d48e5a3 schema:name doi
133 schema:value 10.1038/nnano.2012.258
134 rdf:type schema:PropertyValue
135 Nf3dbeb5d829b49e6a6e8230154df4f01 schema:issueNumber 3
136 rdf:type schema:PublicationIssue
137 Nf6f635a243f24ae09350ba43ebf7d877 rdf:first sg:person.01156154225.32
138 rdf:rest N1007f4dd20534350beaabcb1385e48a9
139 Nfcef7db195194d8396e1e4f30a956d38 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
142 schema:name Chemical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Chemistry (incl. Structural)
146 rdf:type schema:DefinedTerm
147 sg:grant.3777111 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2012.258
148 rdf:type schema:MonetaryGrant
149 sg:journal.1037429 schema:issn 1748-3387
150 1748-3395
151 schema:name Nature Nanotechnology
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01065057430.25 schema:affiliation grid-institutes:grid.450308.a
155 schema:familyName Wernsdorfer
156 schema:givenName Wolfgang
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25
158 rdf:type schema:Person
159 sg:person.011364045561.35 schema:affiliation grid-institutes:grid.450308.a
160 schema:familyName Ganzhorn
161 schema:givenName Marc
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364045561.35
163 rdf:type schema:Person
164 sg:person.01156154225.32 schema:affiliation grid-institutes:grid.7892.4
165 schema:familyName Klyatskaya
166 schema:givenName Svetlana
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156154225.32
168 rdf:type schema:Person
169 sg:person.0625254605.79 schema:affiliation grid-institutes:grid.461894.6
170 schema:familyName Ruben
171 schema:givenName Mario
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625254605.79
173 rdf:type schema:Person
174 sg:pub.10.1038/365141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007450225
175 https://doi.org/10.1038/365141a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/383145a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036610413
178 https://doi.org/10.1038/383145a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature11341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015361904
181 https://doi.org/10.1038/nature11341
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat2133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041640333
184 https://doi.org/10.1038/nmat2133
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat3050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002841688
187 https://doi.org/10.1038/nmat3050
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nnano.2008.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128387
190 https://doi.org/10.1038/nnano.2008.200
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nphys1234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562901
193 https://doi.org/10.1038/nphys1234
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.450308.a schema:alternateName Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France
196 schema:name Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France
197 rdf:type schema:Organization
198 grid-institutes:grid.461894.6 schema:alternateName Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 67034, Strasbourg, France
199 schema:name Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 67034, Strasbourg, France
200 Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
201 rdf:type schema:Organization
202 grid-institutes:grid.7892.4 schema:alternateName Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
203 schema:name Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...