Direct observation of the spin-dependent Peltier effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03

AUTHORS

J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene, B. J. van Wees

ABSTRACT

The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices. More... »

PAGES

166

Journal

TITLE

Nature Nanotechnology

ISSUE

3

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2012.2

DOI

http://dx.doi.org/10.1038/nnano.2012.2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024943075

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22306839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flipse", 
        "givenName": "J.", 
        "id": "sg:person.01126376407.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126376407.91"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bakker", 
        "givenName": "F. L.", 
        "id": "sg:person.0642461765.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642461765.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slachter", 
        "givenName": "A.", 
        "id": "sg:person.015242430144.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242430144.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dejene", 
        "givenName": "F. K.", 
        "id": "sg:person.01310740207.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310740207.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Wees", 
        "givenName": "B. J.", 
        "id": "sg:person.01247476432.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys1767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001689763", 
          "https://doi.org/10.1038/nphys1767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002638046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002638046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.020412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003973116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.020412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003973116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813700", 
          "https://doi.org/10.1038/nmat2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813700", 
          "https://doi.org/10.1038/nmat2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851460", 
          "https://doi.org/10.1038/nmat2856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851460", 
          "https://doi.org/10.1038/nmat2856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(97)00061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.174426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015088215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.174426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015088215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2010.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024022686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.174408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028651356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.174408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028651356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.066603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031084855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.066603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031084855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2425888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031274444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.146601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034027028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.146601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034027028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034212094", 
          "https://doi.org/10.1038/nature10224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034343435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034343435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035306494", 
          "https://doi.org/10.1038/nmat3076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047234331", 
          "https://doi.org/10.1038/nature07321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.052410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.052410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.012401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.012401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2012.2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3781514", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Direct observation of the spin-dependent Peltier effect", 
    "pagination": "166", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76d424fbf9ea89d500475b1e27f0e29801a73582f1c0be1be5cf6daa8dec0f01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22306839"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2012.2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024943075"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2012.2", 
      "https://app.dimensions.ai/details/publication/pub.1024943075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2012.2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.2'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2012.2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7b629c93d42a4173be39f86a474a4921
4 schema:citation sg:pub.10.1038/nature07321
5 sg:pub.10.1038/nature10224
6 sg:pub.10.1038/nmat2856
7 sg:pub.10.1038/nmat2860
8 sg:pub.10.1038/nmat3076
9 sg:pub.10.1038/nphys1767
10 https://doi.org/10.1016/j.ssc.2010.01.022
11 https://doi.org/10.1016/s0304-8853(97)00061-9
12 https://doi.org/10.1103/physrevb.60.477
13 https://doi.org/10.1103/physrevb.73.052410
14 https://doi.org/10.1103/physrevb.79.174426
15 https://doi.org/10.1103/physrevb.81.100408
16 https://doi.org/10.1103/physrevb.83.012401
17 https://doi.org/10.1103/physrevb.84.020412
18 https://doi.org/10.1103/physrevb.84.174408
19 https://doi.org/10.1103/physrevlett.104.146601
20 https://doi.org/10.1103/physrevlett.105.136601
21 https://doi.org/10.1103/physrevlett.107.177201
22 https://doi.org/10.1103/physrevlett.99.066603
23 https://doi.org/10.1103/revmodphys.76.323
24 https://doi.org/10.1103/revmodphys.78.217
25 https://doi.org/10.1149/1.2425888
26 schema:datePublished 2012-03
27 schema:datePublishedReg 2012-03-01
28 schema:description The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N1f6807394ecb42c8b199d62defc44b50
33 Nfacc01726aba497a8c99c58810d14a58
34 sg:journal.1037429
35 schema:name Direct observation of the spin-dependent Peltier effect
36 schema:pagination 166
37 schema:productId N645daa1b14ae487bb6e0a10184bc5c03
38 N6c84b21f459d4338917ab0f8ba42f091
39 N7711364b95ed4e2c9ca9429b54eeb717
40 Na46b8eb728d8447aa12b2a53d417734c
41 Nb0a6644b7fbf46dd8c9ad8d01dc72cae
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024943075
43 https://doi.org/10.1038/nnano.2012.2
44 schema:sdDatePublished 2019-04-10T17:20
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N928c3be53d0c44e28581ac04bded1781
47 schema:url https://www.nature.com/articles/nnano.2012.2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0fa10667d76d4c75959ae19c4ad094bb rdf:first sg:person.01247476432.53
52 rdf:rest rdf:nil
53 N1f6807394ecb42c8b199d62defc44b50 schema:volumeNumber 7
54 rdf:type schema:PublicationVolume
55 N316ac6581172414aad4042ff1ede965b rdf:first sg:person.015242430144.85
56 rdf:rest Ncc52c2eeb8014cd8b451977e2420ad6d
57 N645daa1b14ae487bb6e0a10184bc5c03 schema:name pubmed_id
58 schema:value 22306839
59 rdf:type schema:PropertyValue
60 N6c84b21f459d4338917ab0f8ba42f091 schema:name nlm_unique_id
61 schema:value 101283273
62 rdf:type schema:PropertyValue
63 N7711364b95ed4e2c9ca9429b54eeb717 schema:name dimensions_id
64 schema:value pub.1024943075
65 rdf:type schema:PropertyValue
66 N7b629c93d42a4173be39f86a474a4921 rdf:first sg:person.01126376407.91
67 rdf:rest Nec774846b75f4eb783e1eab1c4e505b8
68 N928c3be53d0c44e28581ac04bded1781 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Na46b8eb728d8447aa12b2a53d417734c schema:name readcube_id
71 schema:value 76d424fbf9ea89d500475b1e27f0e29801a73582f1c0be1be5cf6daa8dec0f01
72 rdf:type schema:PropertyValue
73 Nb0a6644b7fbf46dd8c9ad8d01dc72cae schema:name doi
74 schema:value 10.1038/nnano.2012.2
75 rdf:type schema:PropertyValue
76 Ncc52c2eeb8014cd8b451977e2420ad6d rdf:first sg:person.01310740207.02
77 rdf:rest N0fa10667d76d4c75959ae19c4ad094bb
78 Nec774846b75f4eb783e1eab1c4e505b8 rdf:first sg:person.0642461765.61
79 rdf:rest N316ac6581172414aad4042ff1ede965b
80 Nfacc01726aba497a8c99c58810d14a58 schema:issueNumber 3
81 rdf:type schema:PublicationIssue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:grant.3781514 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2012.2
89 rdf:type schema:MonetaryGrant
90 sg:journal.1037429 schema:issn 1748-3387
91 1748-3395
92 schema:name Nature Nanotechnology
93 rdf:type schema:Periodical
94 sg:person.01126376407.91 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
95 schema:familyName Flipse
96 schema:givenName J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126376407.91
98 rdf:type schema:Person
99 sg:person.01247476432.53 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
100 schema:familyName van Wees
101 schema:givenName B. J.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53
103 rdf:type schema:Person
104 sg:person.01310740207.02 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
105 schema:familyName Dejene
106 schema:givenName F. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310740207.02
108 rdf:type schema:Person
109 sg:person.015242430144.85 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
110 schema:familyName Slachter
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242430144.85
113 rdf:type schema:Person
114 sg:person.0642461765.61 schema:familyName Bakker
115 schema:givenName F. L.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642461765.61
117 rdf:type schema:Person
118 sg:pub.10.1038/nature07321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234331
119 https://doi.org/10.1038/nature07321
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature10224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212094
122 https://doi.org/10.1038/nature10224
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat2856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851460
125 https://doi.org/10.1038/nmat2856
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat2860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813700
128 https://doi.org/10.1038/nmat2860
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat3076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035306494
131 https://doi.org/10.1038/nmat3076
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nphys1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001689763
134 https://doi.org/10.1038/nphys1767
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ssc.2010.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024022686
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0304-8853(97)00061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095493
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.60.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594154
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.73.052410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616477
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.79.174426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015088215
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.81.100408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631926
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.83.012401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634622
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevb.84.020412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003973116
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.84.174408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028651356
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.104.146601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034027028
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.105.136601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034343435
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.107.177201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002638046
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.99.066603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031084855
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/revmodphys.76.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326605
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/revmodphys.78.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035281314
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1149/1.2425888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274444
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
169 schema:name Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...