Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

J. H. Franken, H. J. M. Swagten, B. Koopmans

ABSTRACT

The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip. More... »

PAGES

499

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2012.111

DOI

http://dx.doi.org/10.1038/nnano.2012.111

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009109602

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22796743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anisotropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cobalt", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platinum", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franken", 
        "givenName": "J. H.", 
        "id": "sg:person.01026504643.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026504643.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swagten", 
        "givenName": "H. J. M.", 
        "id": "sg:person.016605545131.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605545131.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koopmans", 
        "givenName": "B.", 
        "id": "sg:person.01154364260.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154364260.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1143/apex.3.093004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003849699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/2/024216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008314364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008401895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020869528", 
          "https://doi.org/10.1038/ncomms1848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021917306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025232748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025232748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027066544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027066544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1401803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1802388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057823097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2167327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057841679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2399441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057854432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2794030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057867593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2912521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057881506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3432703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057951275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3549589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057972121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3658805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3684972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058000541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1975.9912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.1972.1067260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061667047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5371.1919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08", 
    "datePublishedReg": "2012-08-01", 
    "description": "The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2012.111", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy", 
    "pagination": "499", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b66372dfe1e2307d4501bb1bc50cd1d6944f79534c6fd13d6cff30dd84faa3f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22796743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2012.111"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009109602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2012.111", 
      "https://app.dimensions.ai/details/publication/pub.1009109602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2012.111"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.111'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.111'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.111'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2012.111'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      61 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2012.111 schema:about N7ffcc3760f4c4e47abdba29af339d34f
2 N9a5b368423b9401c950e26437da861cd
3 Nab50cbf311da4e8cba5e35020becb5dc
4 Ncfb4e4c01a914620a81b06ed3006c019
5 Ne15c605e97a54aef9d5a644b31cf8425
6 Nf3cb0eadb24d407da48f11159b39d213
7 anzsrc-for:09
8 anzsrc-for:0903
9 schema:author N0e9d792128224695a5353eef7550fe48
10 schema:citation sg:pub.10.1038/nature10309
11 sg:pub.10.1038/ncomms1848
12 https://doi.org/10.1002/adma.201103264
13 https://doi.org/10.1063/1.1401803
14 https://doi.org/10.1063/1.1802388
15 https://doi.org/10.1063/1.2167327
16 https://doi.org/10.1063/1.2399441
17 https://doi.org/10.1063/1.2794030
18 https://doi.org/10.1063/1.2912521
19 https://doi.org/10.1063/1.3432703
20 https://doi.org/10.1063/1.3549589
21 https://doi.org/10.1063/1.3658805
22 https://doi.org/10.1063/1.3684972
23 https://doi.org/10.1088/0953-8984/24/2/024216
24 https://doi.org/10.1103/physrevlett.100.037203
25 https://doi.org/10.1103/physrevlett.106.087204
26 https://doi.org/10.1103/physrevlett.80.849
27 https://doi.org/10.1103/physrevlett.99.217208
28 https://doi.org/10.1109/proc.1975.9912
29 https://doi.org/10.1109/tmag.1972.1067260
30 https://doi.org/10.1126/science.1070595
31 https://doi.org/10.1126/science.1108813
32 https://doi.org/10.1126/science.1145799
33 https://doi.org/10.1126/science.1218197
34 https://doi.org/10.1126/science.280.5371.1919
35 https://doi.org/10.1143/apex.3.093004
36 schema:datePublished 2012-08
37 schema:datePublishedReg 2012-08-01
38 schema:description The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N75a4e8498bed4513b726cdd9b6d9bdfb
43 Ncf2b76acb1354667b250387276bd64c6
44 sg:journal.1037429
45 schema:name Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy
46 schema:pagination 499
47 schema:productId N4cd601edc1a047d9ae6077259b4c8745
48 N81ac1a7fd44145ed9a3a9bb90bc8485a
49 N98434ff9d8724a8b8c8d2bee38ce5ec2
50 Nd3dd93e1050d4437816343fb227fdd58
51 Nfda32eb70e6242568d75872c9e67eece
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009109602
53 https://doi.org/10.1038/nnano.2012.111
54 schema:sdDatePublished 2019-04-11T00:56
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N8b43c85c65964147afea39255433ce74
57 schema:url https://www.nature.com/articles/nnano.2012.111
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N04d38c7997b449528d284b841ef7fdaf rdf:first sg:person.016605545131.96
62 rdf:rest N3b0c1aac81814b968189104c5e0ee188
63 N0e9d792128224695a5353eef7550fe48 rdf:first sg:person.01026504643.28
64 rdf:rest N04d38c7997b449528d284b841ef7fdaf
65 N3b0c1aac81814b968189104c5e0ee188 rdf:first sg:person.01154364260.00
66 rdf:rest rdf:nil
67 N4cd601edc1a047d9ae6077259b4c8745 schema:name dimensions_id
68 schema:value pub.1009109602
69 rdf:type schema:PropertyValue
70 N75a4e8498bed4513b726cdd9b6d9bdfb schema:volumeNumber 7
71 rdf:type schema:PublicationVolume
72 N7ffcc3760f4c4e47abdba29af339d34f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Magnetic Fields
74 rdf:type schema:DefinedTerm
75 N81ac1a7fd44145ed9a3a9bb90bc8485a schema:name readcube_id
76 schema:value 2b66372dfe1e2307d4501bb1bc50cd1d6944f79534c6fd13d6cff30dd84faa3f
77 rdf:type schema:PropertyValue
78 N8b43c85c65964147afea39255433ce74 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N98434ff9d8724a8b8c8d2bee38ce5ec2 schema:name nlm_unique_id
81 schema:value 101283273
82 rdf:type schema:PropertyValue
83 N9a5b368423b9401c950e26437da861cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Platinum
85 rdf:type schema:DefinedTerm
86 Nab50cbf311da4e8cba5e35020becb5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Nanotechnology
88 rdf:type schema:DefinedTerm
89 Ncf2b76acb1354667b250387276bd64c6 schema:issueNumber 8
90 rdf:type schema:PublicationIssue
91 Ncfb4e4c01a914620a81b06ed3006c019 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Magnetic Phenomena
93 rdf:type schema:DefinedTerm
94 Nd3dd93e1050d4437816343fb227fdd58 schema:name doi
95 schema:value 10.1038/nnano.2012.111
96 rdf:type schema:PropertyValue
97 Ne15c605e97a54aef9d5a644b31cf8425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Anisotropy
99 rdf:type schema:DefinedTerm
100 Nf3cb0eadb24d407da48f11159b39d213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cobalt
102 rdf:type schema:DefinedTerm
103 Nfda32eb70e6242568d75872c9e67eece schema:name pubmed_id
104 schema:value 22796743
105 rdf:type schema:PropertyValue
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biomedical Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1037429 schema:issn 1748-3387
113 1748-3395
114 schema:name Nature Nanotechnology
115 rdf:type schema:Periodical
116 sg:person.01026504643.28 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
117 schema:familyName Franken
118 schema:givenName J. H.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026504643.28
120 rdf:type schema:Person
121 sg:person.01154364260.00 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
122 schema:familyName Koopmans
123 schema:givenName B.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154364260.00
125 rdf:type schema:Person
126 sg:person.016605545131.96 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
127 schema:familyName Swagten
128 schema:givenName H. J. M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605545131.96
130 rdf:type schema:Person
131 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
132 https://doi.org/10.1038/nature10309
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms1848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020869528
135 https://doi.org/10.1038/ncomms1848
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/adma.201103264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021917306
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1401803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702995
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1802388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057823097
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.2167327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057841679
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.2399441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057854432
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.2794030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867593
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2912521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881506
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.3432703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057951275
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.3549589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057972121
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.3658805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993593
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.3684972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000541
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/0953-8984/24/2/024216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008314364
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.100.037203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025232748
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.106.087204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758022
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.80.849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817803
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.99.217208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027066544
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/proc.1975.9912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443137
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tmag.1972.1067260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061667047
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1070595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446430
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1218197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401895
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.280.5371.1919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561499
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1143/apex.3.093004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849699
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.6852.9 schema:alternateName Eindhoven University of Technology
186 schema:name Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...