The origins and limits of metal–graphene junction resistance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Fengnian Xia, Vasili Perebeinos, Yu-ming Lin, Yanqing Wu, Phaedon Avouris

ABSTRACT

A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency. More... »

PAGES

179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2011.6

DOI

http://dx.doi.org/10.1038/nnano.2011.6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034103583

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21297624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Capacitance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Impedance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Graphite", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Limit of Detection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Palladium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transistors, Electronic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Fengnian", 
        "id": "sg:person.01000276270.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000276270.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perebeinos", 
        "givenName": "Vasili", 
        "id": "sg:person.01263723112.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263723112.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yu-ming", 
        "id": "sg:person.01206043275.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206043275.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Yanqing", 
        "id": "sg:person.0632376563.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632376563.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avouris", 
        "givenName": "Phaedon", 
        "id": "sg:person.012547452644.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.79.195438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001421099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001421099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032704", 
          "https://doi.org/10.1038/nnano.2010.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2009.11.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012116669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2009.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016318663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018140149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018140149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3290248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022419153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.14219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039291262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.14219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039291262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040100932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040100932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1138020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045394824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048387764", 
          "https://doi.org/10.1038/nphys781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8033812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050142539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8033812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050142539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050262576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050262576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9017995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9017995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9039636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9039636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.085410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.085410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2009.2020699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061354459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2009.2017646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061593374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2009.5424297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095774096"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 \u00b1 20 \u03a9 \u00b5m at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2011.6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "The origins and limits of metal\u2013graphene junction resistance", 
    "pagination": "179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a275823d76b00f6418d69013229bec92f34ef15ae3668d4d1298c6271fc4f04d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21297624"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2011.6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034103583"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2011.6", 
      "https://app.dimensions.ai/details/publication/pub.1034103583"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2011.6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      70 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2011.6 schema:about N0069d5e943084ff6b0e947a30bfb4d09
2 N148f8cd927e945e5a63051ff5380387d
3 N3592afe061ae4540a161efd381bb7ba9
4 N3ae417295e704fc5a2e88e8f443ae329
5 N3e91f348c9334733a5840e3e25389be2
6 N5bc1a7325a464d5a94e604429c0b611e
7 N6c9a9d5f62c84d1e8d30ff4cef47b548
8 N84b3a01ac62248bdba726aa51a3092ef
9 N9dfc7f128aae450baa5cb84009a996f4
10 Nbd8e13a4ee1a4fbdaf69affd92f7918b
11 Nbf186f4e3cd048bc95c25798ebef4d8c
12 Nc6aaaed0d7984973b329181f2431639e
13 Ne92568b0abe44e3b9a5857bb6d0d7958
14 Ne9280487342f4c4cb4666e4aa8a0704a
15 anzsrc-for:09
16 anzsrc-for:0912
17 schema:author N05b27a5eafed465cb5e5f4d6c72ac1fd
18 schema:citation sg:pub.10.1038/nnano.2010.220
19 sg:pub.10.1038/nphys384
20 sg:pub.10.1038/nphys781
21 https://doi.org/10.1016/j.physe.2009.11.080
22 https://doi.org/10.1016/j.ssc.2009.02.039
23 https://doi.org/10.1021/nl8033812
24 https://doi.org/10.1021/nl9017995
25 https://doi.org/10.1021/nl9039636
26 https://doi.org/10.1063/1.3290248
27 https://doi.org/10.1103/physrevb.61.14219
28 https://doi.org/10.1103/physrevb.74.041403
29 https://doi.org/10.1103/physrevb.77.075420
30 https://doi.org/10.1103/physrevb.77.125420
31 https://doi.org/10.1103/physrevb.78.121402
32 https://doi.org/10.1103/physrevb.79.075428
33 https://doi.org/10.1103/physrevb.79.085410
34 https://doi.org/10.1103/physrevb.79.195425
35 https://doi.org/10.1103/physrevb.79.195438
36 https://doi.org/10.1103/physrevlett.100.196802
37 https://doi.org/10.1103/physrevlett.101.026803
38 https://doi.org/10.1103/physrevlett.50.1998
39 https://doi.org/10.1103/physrevlett.96.076802
40 https://doi.org/10.1109/iedm.2009.5424297
41 https://doi.org/10.1109/led.2009.2020699
42 https://doi.org/10.1109/ted.2009.2017646
43 https://doi.org/10.1126/science.1138020
44 https://doi.org/10.1126/science.1184289
45 schema:datePublished 2011-03
46 schema:datePublishedReg 2011-03-01
47 schema:description A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N7095c8d6e8aa41a497132cefa273e27f
52 Nf52ae34f21a04c779e130f8533d62e48
53 sg:journal.1037429
54 schema:name The origins and limits of metal–graphene junction resistance
55 schema:pagination 179
56 schema:productId N5010f22944044a919fabf09c3f8a6f9a
57 N95ff9cad67954e97815057ea51238161
58 Nb482255cfbc34e67b7e1109c2352b553
59 Nb5b08590b2eb43bdb4f1aea5e1898ff8
60 Nf4fca0c98ca74a88b99ef99735db37b3
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103583
62 https://doi.org/10.1038/nnano.2011.6
63 schema:sdDatePublished 2019-04-10T22:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N646289b48e48411c886a9fa9249f165a
66 schema:url https://www.nature.com/articles/nnano.2011.6
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0069d5e943084ff6b0e947a30bfb4d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Electric Capacitance
72 rdf:type schema:DefinedTerm
73 N05b27a5eafed465cb5e5f4d6c72ac1fd rdf:first sg:person.01000276270.01
74 rdf:rest N633be65b792a4e36ae375c04ad676ce5
75 N148f8cd927e945e5a63051ff5380387d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Metals
77 rdf:type schema:DefinedTerm
78 N3592afe061ae4540a161efd381bb7ba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Algorithms
80 rdf:type schema:DefinedTerm
81 N3ae417295e704fc5a2e88e8f443ae329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Transistors, Electronic
83 rdf:type schema:DefinedTerm
84 N3e91f348c9334733a5840e3e25389be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Temperature
86 rdf:type schema:DefinedTerm
87 N5010f22944044a919fabf09c3f8a6f9a schema:name nlm_unique_id
88 schema:value 101283273
89 rdf:type schema:PropertyValue
90 N5bc1a7325a464d5a94e604429c0b611e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Electric Impedance
92 rdf:type schema:DefinedTerm
93 N633be65b792a4e36ae375c04ad676ce5 rdf:first sg:person.01263723112.43
94 rdf:rest N8884c438828f4968899eef47b435c8a9
95 N646289b48e48411c886a9fa9249f165a schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N6c9a9d5f62c84d1e8d30ff4cef47b548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Palladium
99 rdf:type schema:DefinedTerm
100 N7095c8d6e8aa41a497132cefa273e27f schema:volumeNumber 6
101 rdf:type schema:PublicationVolume
102 N84b3a01ac62248bdba726aa51a3092ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Surface Properties
104 rdf:type schema:DefinedTerm
105 N8884c438828f4968899eef47b435c8a9 rdf:first sg:person.01206043275.56
106 rdf:rest Na2fbe9e5256242ae8f016a4d17adea17
107 N95ff9cad67954e97815057ea51238161 schema:name dimensions_id
108 schema:value pub.1034103583
109 rdf:type schema:PropertyValue
110 N9dfc7f128aae450baa5cb84009a996f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Electronics
112 rdf:type schema:DefinedTerm
113 Na2fbe9e5256242ae8f016a4d17adea17 rdf:first sg:person.0632376563.47
114 rdf:rest Nb22ef581aa674ad7a774a155ab70fe31
115 Nb22ef581aa674ad7a774a155ab70fe31 rdf:first sg:person.012547452644.37
116 rdf:rest rdf:nil
117 Nb482255cfbc34e67b7e1109c2352b553 schema:name doi
118 schema:value 10.1038/nnano.2011.6
119 rdf:type schema:PropertyValue
120 Nb5b08590b2eb43bdb4f1aea5e1898ff8 schema:name readcube_id
121 schema:value a275823d76b00f6418d69013229bec92f34ef15ae3668d4d1298c6271fc4f04d
122 rdf:type schema:PropertyValue
123 Nbd8e13a4ee1a4fbdaf69affd92f7918b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Limit of Detection
125 rdf:type schema:DefinedTerm
126 Nbf186f4e3cd048bc95c25798ebef4d8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Calibration
128 rdf:type schema:DefinedTerm
129 Nc6aaaed0d7984973b329181f2431639e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Electrons
131 rdf:type schema:DefinedTerm
132 Ne92568b0abe44e3b9a5857bb6d0d7958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Nanotechnology
134 rdf:type schema:DefinedTerm
135 Ne9280487342f4c4cb4666e4aa8a0704a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Graphite
137 rdf:type schema:DefinedTerm
138 Nf4fca0c98ca74a88b99ef99735db37b3 schema:name pubmed_id
139 schema:value 21297624
140 rdf:type schema:PropertyValue
141 Nf52ae34f21a04c779e130f8533d62e48 schema:issueNumber 3
142 rdf:type schema:PublicationIssue
143 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
144 schema:name Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
147 schema:name Materials Engineering
148 rdf:type schema:DefinedTerm
149 sg:journal.1037429 schema:issn 1748-3387
150 1748-3395
151 schema:name Nature Nanotechnology
152 rdf:type schema:Periodical
153 sg:person.01000276270.01 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
154 schema:familyName Xia
155 schema:givenName Fengnian
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000276270.01
157 rdf:type schema:Person
158 sg:person.01206043275.56 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
159 schema:familyName Lin
160 schema:givenName Yu-ming
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206043275.56
162 rdf:type schema:Person
163 sg:person.012547452644.37 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
164 schema:familyName Avouris
165 schema:givenName Phaedon
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37
167 rdf:type schema:Person
168 sg:person.01263723112.43 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
169 schema:familyName Perebeinos
170 schema:givenName Vasili
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263723112.43
172 rdf:type schema:Person
173 sg:person.0632376563.47 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
174 schema:familyName Wu
175 schema:givenName Yanqing
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632376563.47
177 rdf:type schema:Person
178 sg:pub.10.1038/nnano.2010.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032704
179 https://doi.org/10.1038/nnano.2010.220
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021533520
182 https://doi.org/10.1038/nphys384
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nphys781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387764
185 https://doi.org/10.1038/nphys781
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.physe.2009.11.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012116669
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ssc.2009.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016318663
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nl8033812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050142539
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/nl9017995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222062
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/nl9039636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222332
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.3290248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022419153
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.61.14219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039291262
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.74.041403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018140149
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.77.075420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623924
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.77.125420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040100932
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.78.121402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030738081
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.79.075428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627473
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.79.085410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627535
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.79.195425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502167
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.79.195438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001421099
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.100.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050262576
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.101.026803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030541306
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.50.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788637
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.96.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955936
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/iedm.2009.5424297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095774096
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/led.2009.2020699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061354459
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/ted.2009.2017646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061593374
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1138020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045394824
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1184289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688626
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
236 schema:name IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...