The origins and limits of metal–graphene junction resistance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Fengnian Xia, Vasili Perebeinos, Yu-ming Lin, Yanqing Wu, Phaedon Avouris

ABSTRACT

A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency. More... »

PAGES

179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2011.6

DOI

http://dx.doi.org/10.1038/nnano.2011.6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034103583

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21297624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Capacitance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Impedance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Graphite", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Limit of Detection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Palladium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transistors, Electronic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Fengnian", 
        "id": "sg:person.01000276270.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000276270.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perebeinos", 
        "givenName": "Vasili", 
        "id": "sg:person.01263723112.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263723112.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yu-ming", 
        "id": "sg:person.01206043275.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206043275.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Yanqing", 
        "id": "sg:person.0632376563.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632376563.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avouris", 
        "givenName": "Phaedon", 
        "id": "sg:person.012547452644.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.79.195438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001421099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001421099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032704", 
          "https://doi.org/10.1038/nnano.2010.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2009.11.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012116669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2009.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016318663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018140149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018140149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3290248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022419153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.14219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039291262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.14219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039291262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040100932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040100932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1138020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045394824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048387764", 
          "https://doi.org/10.1038/nphys781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8033812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050142539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8033812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050142539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050262576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050262576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9017995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9017995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9039636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9039636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.085410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.085410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2009.2020699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061354459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2009.2017646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061593374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2009.5424297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095774096"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 \u00b1 20 \u03a9 \u00b5m at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2011.6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "The origins and limits of metal\u2013graphene junction resistance", 
    "pagination": "179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a275823d76b00f6418d69013229bec92f34ef15ae3668d4d1298c6271fc4f04d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21297624"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2011.6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034103583"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2011.6", 
      "https://app.dimensions.ai/details/publication/pub.1034103583"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2011.6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.6'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      70 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2011.6 schema:about N13f627dcda424f7683b7c592f40c889b
2 N1acc23825b1e476bb7aa56918f45cfb4
3 N2626684458464733b555e357e1965716
4 N2d0b59fcd885422dae3a499774b25540
5 N2d55c2091f114335a7d78f7228bd6edd
6 N45811f0e9bbf422ea50b0f738fdb9f0d
7 N6efd04e26cbe49a19414f862a8c5c5dc
8 N8671e306af9142e094e719f1b5bfc103
9 Na899f950e1df459d937ef58e1e1d4e3e
10 Nbc4b58e359084de0a91573e91b313faa
11 Nc2eafdea6e7746959d29429916fec97b
12 Nd78669bc50fe4e6e9d91db06b58924ce
13 Nedea960c9e044f1fa67e5221e8eca1a8
14 Nf37ae38c19ea4784843f9d7de85a99e1
15 anzsrc-for:09
16 anzsrc-for:0912
17 schema:author Nda8d4d6e7ed745cabf38e1c576910266
18 schema:citation sg:pub.10.1038/nnano.2010.220
19 sg:pub.10.1038/nphys384
20 sg:pub.10.1038/nphys781
21 https://doi.org/10.1016/j.physe.2009.11.080
22 https://doi.org/10.1016/j.ssc.2009.02.039
23 https://doi.org/10.1021/nl8033812
24 https://doi.org/10.1021/nl9017995
25 https://doi.org/10.1021/nl9039636
26 https://doi.org/10.1063/1.3290248
27 https://doi.org/10.1103/physrevb.61.14219
28 https://doi.org/10.1103/physrevb.74.041403
29 https://doi.org/10.1103/physrevb.77.075420
30 https://doi.org/10.1103/physrevb.77.125420
31 https://doi.org/10.1103/physrevb.78.121402
32 https://doi.org/10.1103/physrevb.79.075428
33 https://doi.org/10.1103/physrevb.79.085410
34 https://doi.org/10.1103/physrevb.79.195425
35 https://doi.org/10.1103/physrevb.79.195438
36 https://doi.org/10.1103/physrevlett.100.196802
37 https://doi.org/10.1103/physrevlett.101.026803
38 https://doi.org/10.1103/physrevlett.50.1998
39 https://doi.org/10.1103/physrevlett.96.076802
40 https://doi.org/10.1109/iedm.2009.5424297
41 https://doi.org/10.1109/led.2009.2020699
42 https://doi.org/10.1109/ted.2009.2017646
43 https://doi.org/10.1126/science.1138020
44 https://doi.org/10.1126/science.1184289
45 schema:datePublished 2011-03
46 schema:datePublishedReg 2011-03-01
47 schema:description A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N396ad7ea1fe5426ea4a21871e85f45a7
52 Ne7863240d9b44d6e8bd7a46ee436ad2b
53 sg:journal.1037429
54 schema:name The origins and limits of metal–graphene junction resistance
55 schema:pagination 179
56 schema:productId N135f1b6f1e48415aa207ed0d529dc0d9
57 N162066a226124ad19626c5ccf6c46f34
58 N6ab02298a9174ae09371b8f6ade7f4ff
59 Nb06128d850624ffb9e82ff3abe1b86d5
60 Ned5b7fa8ce124a24a045c7ab23c02439
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103583
62 https://doi.org/10.1038/nnano.2011.6
63 schema:sdDatePublished 2019-04-10T22:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N6e744be4b46149b1825dcbbc88127342
66 schema:url https://www.nature.com/articles/nnano.2011.6
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N135f1b6f1e48415aa207ed0d529dc0d9 schema:name pubmed_id
71 schema:value 21297624
72 rdf:type schema:PropertyValue
73 N13f627dcda424f7683b7c592f40c889b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Graphite
75 rdf:type schema:DefinedTerm
76 N162066a226124ad19626c5ccf6c46f34 schema:name dimensions_id
77 schema:value pub.1034103583
78 rdf:type schema:PropertyValue
79 N1acc23825b1e476bb7aa56918f45cfb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Electronics
81 rdf:type schema:DefinedTerm
82 N2626684458464733b555e357e1965716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Electric Capacitance
84 rdf:type schema:DefinedTerm
85 N2d0b59fcd885422dae3a499774b25540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Algorithms
87 rdf:type schema:DefinedTerm
88 N2d55c2091f114335a7d78f7228bd6edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Surface Properties
90 rdf:type schema:DefinedTerm
91 N396ad7ea1fe5426ea4a21871e85f45a7 schema:volumeNumber 6
92 rdf:type schema:PublicationVolume
93 N45811f0e9bbf422ea50b0f738fdb9f0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Calibration
95 rdf:type schema:DefinedTerm
96 N47c34e3063ce40a2b541925e4fbb96d3 rdf:first sg:person.012547452644.37
97 rdf:rest rdf:nil
98 N536a28ce923d494f8442cbd65b8a47aa rdf:first sg:person.01206043275.56
99 rdf:rest Nc97579e10cb7456eb27b31c9f7696eac
100 N6ab02298a9174ae09371b8f6ade7f4ff schema:name doi
101 schema:value 10.1038/nnano.2011.6
102 rdf:type schema:PropertyValue
103 N6e744be4b46149b1825dcbbc88127342 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N6efd04e26cbe49a19414f862a8c5c5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Electrons
107 rdf:type schema:DefinedTerm
108 N8671e306af9142e094e719f1b5bfc103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Metals
110 rdf:type schema:DefinedTerm
111 Na899f950e1df459d937ef58e1e1d4e3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Temperature
113 rdf:type schema:DefinedTerm
114 Nb06128d850624ffb9e82ff3abe1b86d5 schema:name readcube_id
115 schema:value a275823d76b00f6418d69013229bec92f34ef15ae3668d4d1298c6271fc4f04d
116 rdf:type schema:PropertyValue
117 Nbc4b58e359084de0a91573e91b313faa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Limit of Detection
119 rdf:type schema:DefinedTerm
120 Nc2eafdea6e7746959d29429916fec97b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Palladium
122 rdf:type schema:DefinedTerm
123 Nc97579e10cb7456eb27b31c9f7696eac rdf:first sg:person.0632376563.47
124 rdf:rest N47c34e3063ce40a2b541925e4fbb96d3
125 Nc9c9680f750a49c9b9efbc1a3c767de4 rdf:first sg:person.01263723112.43
126 rdf:rest N536a28ce923d494f8442cbd65b8a47aa
127 Nd78669bc50fe4e6e9d91db06b58924ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Transistors, Electronic
129 rdf:type schema:DefinedTerm
130 Nda8d4d6e7ed745cabf38e1c576910266 rdf:first sg:person.01000276270.01
131 rdf:rest Nc9c9680f750a49c9b9efbc1a3c767de4
132 Ne7863240d9b44d6e8bd7a46ee436ad2b schema:issueNumber 3
133 rdf:type schema:PublicationIssue
134 Ned5b7fa8ce124a24a045c7ab23c02439 schema:name nlm_unique_id
135 schema:value 101283273
136 rdf:type schema:PropertyValue
137 Nedea960c9e044f1fa67e5221e8eca1a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Electric Impedance
139 rdf:type schema:DefinedTerm
140 Nf37ae38c19ea4784843f9d7de85a99e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Nanotechnology
142 rdf:type schema:DefinedTerm
143 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
144 schema:name Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
147 schema:name Materials Engineering
148 rdf:type schema:DefinedTerm
149 sg:journal.1037429 schema:issn 1748-3387
150 1748-3395
151 schema:name Nature Nanotechnology
152 rdf:type schema:Periodical
153 sg:person.01000276270.01 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
154 schema:familyName Xia
155 schema:givenName Fengnian
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000276270.01
157 rdf:type schema:Person
158 sg:person.01206043275.56 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
159 schema:familyName Lin
160 schema:givenName Yu-ming
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206043275.56
162 rdf:type schema:Person
163 sg:person.012547452644.37 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
164 schema:familyName Avouris
165 schema:givenName Phaedon
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37
167 rdf:type schema:Person
168 sg:person.01263723112.43 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
169 schema:familyName Perebeinos
170 schema:givenName Vasili
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263723112.43
172 rdf:type schema:Person
173 sg:person.0632376563.47 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
174 schema:familyName Wu
175 schema:givenName Yanqing
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632376563.47
177 rdf:type schema:Person
178 sg:pub.10.1038/nnano.2010.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032704
179 https://doi.org/10.1038/nnano.2010.220
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021533520
182 https://doi.org/10.1038/nphys384
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nphys781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387764
185 https://doi.org/10.1038/nphys781
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.physe.2009.11.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012116669
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ssc.2009.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016318663
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nl8033812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050142539
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/nl9017995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222062
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/nl9039636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222332
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.3290248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022419153
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.61.14219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039291262
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.74.041403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018140149
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.77.075420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623924
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.77.125420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040100932
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.78.121402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030738081
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.79.075428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627473
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.79.085410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627535
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.79.195425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502167
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.79.195438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001421099
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.100.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050262576
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.101.026803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030541306
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.50.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788637
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.96.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955936
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/iedm.2009.5424297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095774096
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/led.2009.2020699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061354459
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/ted.2009.2017646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061593374
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1138020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045394824
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1184289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688626
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
236 schema:name IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...