Graphene nanoribbons with smooth edges behave as quantum wires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

Xinran Wang, Yijian Ouyang, Liying Jiao, Hailiang Wang, Liming Xie, Justin Wu, Jing Guo, Hongjie Dai

ABSTRACT

Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to ∼20 meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects. More... »

PAGES

563

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2011.138

DOI

http://dx.doi.org/10.1038/nnano.2011.138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021481519

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21873992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA", 
            "National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinran", 
        "id": "sg:person.01014575676.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouyang", 
        "givenName": "Yijian", 
        "id": "sg:person.013361422501.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013361422501.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "Liying", 
        "id": "sg:person.011563037375.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hailiang", 
        "id": "sg:person.01133634533.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Liming", 
        "id": "sg:person.0707672005.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707672005.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Justin", 
        "id": "sg:person.01313130754.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313130754.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Jing", 
        "id": "sg:person.01004022460.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Hongjie", 
        "id": "sg:person.01320646106.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-72865-8_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002654860", 
          "https://doi.org/10.1007/978-3-540-72865-8_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72865-8_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002654860", 
          "https://doi.org/10.1007/978-3-540-72865-8_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003521282", 
          "https://doi.org/10.1038/nchem.719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.085428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005995878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.085428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005995878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016692872", 
          "https://doi.org/10.1038/nnano.2010.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja203860a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja203860a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035301718", 
          "https://doi.org/10.1038/nnano.2010.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035301718", 
          "https://doi.org/10.1038/nnano.2010.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044502162", 
          "https://doi.org/10.1038/nphys544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048424477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048424477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.156801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049694397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.156801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049694397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050828226", 
          "https://doi.org/10.1038/nature02568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050828226", 
          "https://doi.org/10.1038/nature02568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100750v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100750v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1431402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2003.814980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061591007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5308.1922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5344.1788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to \u223c20\u00a0meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2011.138", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Graphene nanoribbons with smooth edges behave as quantum wires", 
    "pagination": "563", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "66593681d09b84c8ab014cc37113e89d8ddc6f256e8e06ca44eb651633baeaba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21873992"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2011.138"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021481519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2011.138", 
      "https://app.dimensions.ai/details/publication/pub.1021481519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2011.138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2011.138 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N45746b33e4e148e283cfb88f62d5de78
4 schema:citation sg:pub.10.1007/978-3-540-72865-8_15
5 sg:pub.10.1038/34373
6 sg:pub.10.1038/35042545
7 sg:pub.10.1038/35079517
8 sg:pub.10.1038/nature01797
9 sg:pub.10.1038/nature02568
10 sg:pub.10.1038/nature05180
11 sg:pub.10.1038/nchem.719
12 sg:pub.10.1038/nnano.2010.249
13 sg:pub.10.1038/nnano.2010.54
14 sg:pub.10.1038/nphys544
15 https://doi.org/10.1016/j.physe.2007.06.020
16 https://doi.org/10.1021/ja203860a
17 https://doi.org/10.1021/nl080241l
18 https://doi.org/10.1021/nl100750v
19 https://doi.org/10.1021/nl803291b
20 https://doi.org/10.1063/1.1431402
21 https://doi.org/10.1103/physrevb.54.17954
22 https://doi.org/10.1103/physrevb.78.161409
23 https://doi.org/10.1103/physrevb.79.075426
24 https://doi.org/10.1103/physrevb.80.085428
25 https://doi.org/10.1103/physrevb.81.115409
26 https://doi.org/10.1103/physrevlett.100.206803
27 https://doi.org/10.1103/physrevlett.102.056403
28 https://doi.org/10.1103/physrevlett.104.056801
29 https://doi.org/10.1103/physrevlett.86.878
30 https://doi.org/10.1103/physrevlett.88.126801
31 https://doi.org/10.1103/physrevlett.88.156801
32 https://doi.org/10.1103/physrevlett.94.186806
33 https://doi.org/10.1103/physrevlett.97.216803
34 https://doi.org/10.1109/ted.2003.814980
35 https://doi.org/10.1126/science.1150878
36 https://doi.org/10.1126/science.1170335
37 https://doi.org/10.1126/science.275.5308.1922
38 https://doi.org/10.1126/science.278.5344.1788
39 schema:datePublished 2011-09
40 schema:datePublishedReg 2011-09-01
41 schema:description Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to ∼20 meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N5f9658a6466e471e8202d9ccf51a69b0
46 Nb10465838c274df2aaf669dad4f7a803
47 sg:journal.1037429
48 schema:name Graphene nanoribbons with smooth edges behave as quantum wires
49 schema:pagination 563
50 schema:productId N0fdf56f9051b4e15a916f809407a4bd0
51 N1df8acc975104af88982e6e7c64e4df3
52 N49e96d4af94b4a32ade69360dcb24a9f
53 N85e888b110e943659eda213cae9bb5a8
54 Nf4a1cbbbcfd944318f40cf9b19cb290a
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021481519
56 https://doi.org/10.1038/nnano.2011.138
57 schema:sdDatePublished 2019-04-10T20:35
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N42b18e390e9348dd8b78310fae45aee4
60 schema:url https://www.nature.com/articles/nnano.2011.138
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0f12946d65f047669cfcdf310bd63511 rdf:first sg:person.011563037375.48
65 rdf:rest N9c3188734b0c49d493d2424f64090199
66 N0fdf56f9051b4e15a916f809407a4bd0 schema:name doi
67 schema:value 10.1038/nnano.2011.138
68 rdf:type schema:PropertyValue
69 N1df8acc975104af88982e6e7c64e4df3 schema:name dimensions_id
70 schema:value pub.1021481519
71 rdf:type schema:PropertyValue
72 N42b18e390e9348dd8b78310fae45aee4 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N45746b33e4e148e283cfb88f62d5de78 rdf:first sg:person.01014575676.43
75 rdf:rest N5dad9fd3854542e6a6714ffb83f768ac
76 N49e96d4af94b4a32ade69360dcb24a9f schema:name pubmed_id
77 schema:value 21873992
78 rdf:type schema:PropertyValue
79 N5dad9fd3854542e6a6714ffb83f768ac rdf:first sg:person.013361422501.51
80 rdf:rest N0f12946d65f047669cfcdf310bd63511
81 N5f9658a6466e471e8202d9ccf51a69b0 schema:issueNumber 9
82 rdf:type schema:PublicationIssue
83 N85e888b110e943659eda213cae9bb5a8 schema:name nlm_unique_id
84 schema:value 101283273
85 rdf:type schema:PropertyValue
86 N9c3188734b0c49d493d2424f64090199 rdf:first sg:person.01133634533.98
87 rdf:rest Nfa604210ec004ae196d061f587f22d9e
88 Nb10465838c274df2aaf669dad4f7a803 schema:volumeNumber 6
89 rdf:type schema:PublicationVolume
90 Nb3724d51da7f4e2899695c7071bdcf05 rdf:first sg:person.01313130754.01
91 rdf:rest Ndd4c905f74034d78849655d490457e9c
92 Ndd4c905f74034d78849655d490457e9c rdf:first sg:person.01004022460.62
93 rdf:rest Nefc721c559da48e6829c09944070082b
94 Nefc721c559da48e6829c09944070082b rdf:first sg:person.01320646106.00
95 rdf:rest rdf:nil
96 Nf4a1cbbbcfd944318f40cf9b19cb290a schema:name readcube_id
97 schema:value 66593681d09b84c8ab014cc37113e89d8ddc6f256e8e06ca44eb651633baeaba
98 rdf:type schema:PropertyValue
99 Nfa604210ec004ae196d061f587f22d9e rdf:first sg:person.0707672005.63
100 rdf:rest Nb3724d51da7f4e2899695c7071bdcf05
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1037429 schema:issn 1748-3387
108 1748-3395
109 schema:name Nature Nanotechnology
110 rdf:type schema:Periodical
111 sg:person.01004022460.62 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
112 schema:familyName Guo
113 schema:givenName Jing
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62
115 rdf:type schema:Person
116 sg:person.01014575676.43 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
117 schema:familyName Wang
118 schema:givenName Xinran
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43
120 rdf:type schema:Person
121 sg:person.01133634533.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
122 schema:familyName Wang
123 schema:givenName Hailiang
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98
125 rdf:type schema:Person
126 sg:person.011563037375.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
127 schema:familyName Jiao
128 schema:givenName Liying
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48
130 rdf:type schema:Person
131 sg:person.01313130754.01 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
132 schema:familyName Wu
133 schema:givenName Justin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313130754.01
135 rdf:type schema:Person
136 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
137 schema:familyName Dai
138 schema:givenName Hongjie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
140 rdf:type schema:Person
141 sg:person.013361422501.51 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
142 schema:familyName Ouyang
143 schema:givenName Yijian
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013361422501.51
145 rdf:type schema:Person
146 sg:person.0707672005.63 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
147 schema:familyName Xie
148 schema:givenName Liming
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707672005.63
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-540-72865-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002654860
152 https://doi.org/10.1007/978-3-540-72865-8_15
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
155 https://doi.org/10.1038/34373
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/35042545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
158 https://doi.org/10.1038/35042545
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
161 https://doi.org/10.1038/35079517
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature01797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124293
164 https://doi.org/10.1038/nature01797
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature02568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050828226
167 https://doi.org/10.1038/nature02568
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
170 https://doi.org/10.1038/nature05180
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nchem.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003521282
173 https://doi.org/10.1038/nchem.719
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nnano.2010.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016692872
176 https://doi.org/10.1038/nnano.2010.249
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nnano.2010.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035301718
179 https://doi.org/10.1038/nnano.2010.54
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044502162
182 https://doi.org/10.1038/nphys544
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/ja203860a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017691473
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nl080241l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396528
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/nl100750v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217886
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nl803291b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221695
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.1431402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706166
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.78.161409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307085
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.79.075426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037908121
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.80.085428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005995878
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.81.115409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048424477
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.102.056403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874268
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.104.056801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756572
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.86.878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036564456
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.88.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824645
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.88.156801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049694397
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.94.186806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020880493
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/ted.2003.814980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061591007
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1170335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077248
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.275.5308.1922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556185
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.278.5344.1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558901
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
233 schema:name Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
236 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
239 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
240 National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...