Graphene nanoribbons with smooth edges behave as quantum wires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

Xinran Wang, Yijian Ouyang, Liying Jiao, Hailiang Wang, Liming Xie, Justin Wu, Jing Guo, Hongjie Dai

ABSTRACT

Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to ∼20 meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects. More... »

PAGES

563

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2011.138

DOI

http://dx.doi.org/10.1038/nnano.2011.138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021481519

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21873992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA", 
            "National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinran", 
        "id": "sg:person.01014575676.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouyang", 
        "givenName": "Yijian", 
        "id": "sg:person.013361422501.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013361422501.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "Liying", 
        "id": "sg:person.011563037375.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hailiang", 
        "id": "sg:person.01133634533.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Liming", 
        "id": "sg:person.0707672005.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707672005.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Justin", 
        "id": "sg:person.01313130754.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313130754.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Jing", 
        "id": "sg:person.01004022460.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Hongjie", 
        "id": "sg:person.01320646106.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-72865-8_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002654860", 
          "https://doi.org/10.1007/978-3-540-72865-8_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72865-8_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002654860", 
          "https://doi.org/10.1007/978-3-540-72865-8_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.056403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003521282", 
          "https://doi.org/10.1038/nchem.719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.085428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005995878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.085428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005995878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016692872", 
          "https://doi.org/10.1038/nnano.2010.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja203860a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja203860a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.186806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035301718", 
          "https://doi.org/10.1038/nnano.2010.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035301718", 
          "https://doi.org/10.1038/nnano.2010.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044502162", 
          "https://doi.org/10.1038/nphys544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048424477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048424477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.156801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049694397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.156801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049694397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050828226", 
          "https://doi.org/10.1038/nature02568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050828226", 
          "https://doi.org/10.1038/nature02568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100750v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100750v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1431402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2003.814980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061591007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5308.1922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5344.1788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to \u223c20\u00a0meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2011.138", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Graphene nanoribbons with smooth edges behave as quantum wires", 
    "pagination": "563", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "66593681d09b84c8ab014cc37113e89d8ddc6f256e8e06ca44eb651633baeaba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21873992"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2011.138"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021481519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2011.138", 
      "https://app.dimensions.ai/details/publication/pub.1021481519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2011.138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.138'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2011.138 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N2ad0d7300fa34999be7e929d5e5d4714
4 schema:citation sg:pub.10.1007/978-3-540-72865-8_15
5 sg:pub.10.1038/34373
6 sg:pub.10.1038/35042545
7 sg:pub.10.1038/35079517
8 sg:pub.10.1038/nature01797
9 sg:pub.10.1038/nature02568
10 sg:pub.10.1038/nature05180
11 sg:pub.10.1038/nchem.719
12 sg:pub.10.1038/nnano.2010.249
13 sg:pub.10.1038/nnano.2010.54
14 sg:pub.10.1038/nphys544
15 https://doi.org/10.1016/j.physe.2007.06.020
16 https://doi.org/10.1021/ja203860a
17 https://doi.org/10.1021/nl080241l
18 https://doi.org/10.1021/nl100750v
19 https://doi.org/10.1021/nl803291b
20 https://doi.org/10.1063/1.1431402
21 https://doi.org/10.1103/physrevb.54.17954
22 https://doi.org/10.1103/physrevb.78.161409
23 https://doi.org/10.1103/physrevb.79.075426
24 https://doi.org/10.1103/physrevb.80.085428
25 https://doi.org/10.1103/physrevb.81.115409
26 https://doi.org/10.1103/physrevlett.100.206803
27 https://doi.org/10.1103/physrevlett.102.056403
28 https://doi.org/10.1103/physrevlett.104.056801
29 https://doi.org/10.1103/physrevlett.86.878
30 https://doi.org/10.1103/physrevlett.88.126801
31 https://doi.org/10.1103/physrevlett.88.156801
32 https://doi.org/10.1103/physrevlett.94.186806
33 https://doi.org/10.1103/physrevlett.97.216803
34 https://doi.org/10.1109/ted.2003.814980
35 https://doi.org/10.1126/science.1150878
36 https://doi.org/10.1126/science.1170335
37 https://doi.org/10.1126/science.275.5308.1922
38 https://doi.org/10.1126/science.278.5344.1788
39 schema:datePublished 2011-09
40 schema:datePublishedReg 2011-09-01
41 schema:description Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to ∼20 meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N7dab489c0f934e11a269f6b9e4530a32
46 N9653113ad9254eb1be6aa8b4916c7621
47 sg:journal.1037429
48 schema:name Graphene nanoribbons with smooth edges behave as quantum wires
49 schema:pagination 563
50 schema:productId N0ab0e04ddc17472ca82eed914888fcac
51 N743586779d4b4ea7bd834ecccb2ab6d3
52 N7e1cc40835d14780a1855eaf4bd8fc46
53 N7e72a9d2cab0450591070eff7a44deae
54 Nb490b988bd614bc3aaafd21344679191
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021481519
56 https://doi.org/10.1038/nnano.2011.138
57 schema:sdDatePublished 2019-04-10T20:35
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3250567081cd47c9b9d36a672f6cd758
60 schema:url https://www.nature.com/articles/nnano.2011.138
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0ab0e04ddc17472ca82eed914888fcac schema:name pubmed_id
65 schema:value 21873992
66 rdf:type schema:PropertyValue
67 N2ad0d7300fa34999be7e929d5e5d4714 rdf:first sg:person.01014575676.43
68 rdf:rest Nb6aefd5a8c7e4944a96e6d6dbe1eecd3
69 N3250567081cd47c9b9d36a672f6cd758 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N743586779d4b4ea7bd834ecccb2ab6d3 schema:name readcube_id
72 schema:value 66593681d09b84c8ab014cc37113e89d8ddc6f256e8e06ca44eb651633baeaba
73 rdf:type schema:PropertyValue
74 N7dab489c0f934e11a269f6b9e4530a32 schema:volumeNumber 6
75 rdf:type schema:PublicationVolume
76 N7e1cc40835d14780a1855eaf4bd8fc46 schema:name nlm_unique_id
77 schema:value 101283273
78 rdf:type schema:PropertyValue
79 N7e72a9d2cab0450591070eff7a44deae schema:name dimensions_id
80 schema:value pub.1021481519
81 rdf:type schema:PropertyValue
82 N908e05fe5db6441fb46cc1e08191dbda rdf:first sg:person.01004022460.62
83 rdf:rest Naadbfca8daef4fa684705a83225eed3a
84 N9653113ad9254eb1be6aa8b4916c7621 schema:issueNumber 9
85 rdf:type schema:PublicationIssue
86 Na4958cb20b834d6c8486b813e886f713 rdf:first sg:person.011563037375.48
87 rdf:rest Nc5edff840a2947c5ad9ba9ff1a53b620
88 Naadbfca8daef4fa684705a83225eed3a rdf:first sg:person.01320646106.00
89 rdf:rest rdf:nil
90 Nb0a5d359b89f4076819f4dcf4cdfe3fd rdf:first sg:person.01313130754.01
91 rdf:rest N908e05fe5db6441fb46cc1e08191dbda
92 Nb490b988bd614bc3aaafd21344679191 schema:name doi
93 schema:value 10.1038/nnano.2011.138
94 rdf:type schema:PropertyValue
95 Nb6aefd5a8c7e4944a96e6d6dbe1eecd3 rdf:first sg:person.013361422501.51
96 rdf:rest Na4958cb20b834d6c8486b813e886f713
97 Nc5edff840a2947c5ad9ba9ff1a53b620 rdf:first sg:person.01133634533.98
98 rdf:rest Nd45b3a19a9904da78105ae57331c2877
99 Nd45b3a19a9904da78105ae57331c2877 rdf:first sg:person.0707672005.63
100 rdf:rest Nb0a5d359b89f4076819f4dcf4cdfe3fd
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1037429 schema:issn 1748-3387
108 1748-3395
109 schema:name Nature Nanotechnology
110 rdf:type schema:Periodical
111 sg:person.01004022460.62 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
112 schema:familyName Guo
113 schema:givenName Jing
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62
115 rdf:type schema:Person
116 sg:person.01014575676.43 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
117 schema:familyName Wang
118 schema:givenName Xinran
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43
120 rdf:type schema:Person
121 sg:person.01133634533.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
122 schema:familyName Wang
123 schema:givenName Hailiang
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98
125 rdf:type schema:Person
126 sg:person.011563037375.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
127 schema:familyName Jiao
128 schema:givenName Liying
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48
130 rdf:type schema:Person
131 sg:person.01313130754.01 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
132 schema:familyName Wu
133 schema:givenName Justin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313130754.01
135 rdf:type schema:Person
136 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
137 schema:familyName Dai
138 schema:givenName Hongjie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
140 rdf:type schema:Person
141 sg:person.013361422501.51 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
142 schema:familyName Ouyang
143 schema:givenName Yijian
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013361422501.51
145 rdf:type schema:Person
146 sg:person.0707672005.63 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
147 schema:familyName Xie
148 schema:givenName Liming
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707672005.63
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-540-72865-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002654860
152 https://doi.org/10.1007/978-3-540-72865-8_15
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
155 https://doi.org/10.1038/34373
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/35042545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
158 https://doi.org/10.1038/35042545
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
161 https://doi.org/10.1038/35079517
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature01797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124293
164 https://doi.org/10.1038/nature01797
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature02568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050828226
167 https://doi.org/10.1038/nature02568
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
170 https://doi.org/10.1038/nature05180
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nchem.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003521282
173 https://doi.org/10.1038/nchem.719
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nnano.2010.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016692872
176 https://doi.org/10.1038/nnano.2010.249
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nnano.2010.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035301718
179 https://doi.org/10.1038/nnano.2010.54
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044502162
182 https://doi.org/10.1038/nphys544
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/ja203860a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017691473
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nl080241l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396528
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/nl100750v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217886
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nl803291b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221695
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.1431402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706166
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.78.161409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307085
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.79.075426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037908121
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.80.085428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005995878
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.81.115409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048424477
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.102.056403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874268
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.104.056801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756572
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.86.878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036564456
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.88.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824645
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.88.156801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049694397
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.94.186806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020880493
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/ted.2003.814980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061591007
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1170335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077248
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.275.5308.1922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556185
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.278.5344.1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558901
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
233 schema:name Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, 32611, USA
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
236 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
239 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
240 National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...