Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02-20

AUTHORS

Xingyou Lang, Akihiko Hirata, Takeshi Fujita, Mingwei Chen

ABSTRACT

Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes1,2,3,4,5,6,7,8, but their energy storage density is too low for many important applications2,3. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment9,10. However, the poor conductivity of MnO2 (10–5–10–6 S cm–1) limits the charge/discharge rate for high-power applications10,11. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (∼1,145 F g–1) that is close to the theoretical value9. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery. More... »

PAGES

232-236

Journal

TITLE

Nature Nanotechnology

ISSUE

4

VOLUME

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2011.13

DOI

http://dx.doi.org/10.1038/nnano.2011.13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019039848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21336267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Xingyou", 
        "id": "sg:person.01056746124.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056746124.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Akihiko", 
        "id": "sg:person.01054462015.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujita", 
        "givenName": "Takeshi", 
        "id": "sg:person.01260575477.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047825494", 
          "https://doi.org/10.1038/nmat2297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-003-0468-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040060429", 
          "https://doi.org/10.1007/s10008-003-0468-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35068529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020633318", 
          "https://doi.org/10.1038/35068529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033903597", 
          "https://doi.org/10.1038/nnano.2010.162"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-20", 
    "datePublishedReg": "2011-02-20", 
    "description": "Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes1,2,3,4,5,6,7,8, but their energy storage density is too low for many important applications2,3. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment9,10. However, the poor conductivity of MnO2 (10\u20135\u201310\u20136\u00a0S\u00a0cm\u20131) limits the charge/discharge rate for high-power applications10,11. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (\u223c1,145\u00a0F\u00a0g\u20131) that is close to the theoretical value9. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nnano.2011.13", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3104714", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3096025", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3093082", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "charge/discharge rate", 
      "electrochemical supercapacitors", 
      "specific capacitance", 
      "nanoporous gold", 
      "pseudocapacitive transition metal oxides", 
      "double-layer capacitors", 
      "high specific capacitance", 
      "fast ion diffusion", 
      "transition metal oxides", 
      "oxide hybrid electrodes", 
      "high energy storage", 
      "energy storage density", 
      "hybrid structure", 
      "nanocrystalline MnO2", 
      "constituent MnO2", 
      "such supercapacitors", 
      "hybrid electrode", 
      "poor conductivity", 
      "high capacitance", 
      "ion diffusion", 
      "supercapacitors", 
      "MnO2", 
      "such hybrid structures", 
      "electrical power", 
      "electrode", 
      "power delivery", 
      "storage density", 
      "promising candidate", 
      "electrical charge", 
      "discharge rate", 
      "electron transport", 
      "capacitance", 
      "gold", 
      "conductivity", 
      "electrolyte", 
      "structure", 
      "oxide", 
      "capacitors", 
      "charge", 
      "diffusion", 
      "power", 
      "density", 
      "storage", 
      "candidates", 
      "transport", 
      "delivery", 
      "rate", 
      "high levels", 
      "levels"
    ], 
    "name": "Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors", 
    "pagination": "232-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019039848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2011.13"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21336267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2011.13", 
      "https://app.dimensions.ai/details/publication/pub.1019039848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_543.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nnano.2011.13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2011.13'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      82 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2011.13 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0906
5 schema:author Nb01f6a6cfb434e93b1ae0c37c715ba4d
6 schema:citation sg:pub.10.1007/978-1-4757-3058-6
7 sg:pub.10.1007/s10008-003-0468-7
8 sg:pub.10.1038/35068529
9 sg:pub.10.1038/nmat1368
10 sg:pub.10.1038/nmat2297
11 sg:pub.10.1038/nnano.2010.162
12 schema:datePublished 2011-02-20
13 schema:datePublishedReg 2011-02-20
14 schema:description Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes1,2,3,4,5,6,7,8, but their energy storage density is too low for many important applications2,3. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment9,10. However, the poor conductivity of MnO2 (10–5–10–6 S cm–1) limits the charge/discharge rate for high-power applications10,11. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (∼1,145 F g–1) that is close to the theoretical value9. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N12df7777567b42c1b07354e4bc75953d
18 N6674aad8d88f43bab66bcfd5770cb07b
19 sg:journal.1037429
20 schema:keywords MnO2
21 candidates
22 capacitance
23 capacitors
24 charge
25 charge/discharge rate
26 conductivity
27 constituent MnO2
28 delivery
29 density
30 diffusion
31 discharge rate
32 double-layer capacitors
33 electrical charge
34 electrical power
35 electrochemical supercapacitors
36 electrode
37 electrolyte
38 electron transport
39 energy storage density
40 fast ion diffusion
41 gold
42 high capacitance
43 high energy storage
44 high levels
45 high specific capacitance
46 hybrid electrode
47 hybrid structure
48 ion diffusion
49 levels
50 nanocrystalline MnO2
51 nanoporous gold
52 oxide
53 oxide hybrid electrodes
54 poor conductivity
55 power
56 power delivery
57 promising candidate
58 pseudocapacitive transition metal oxides
59 rate
60 specific capacitance
61 storage
62 storage density
63 structure
64 such hybrid structures
65 such supercapacitors
66 supercapacitors
67 transition metal oxides
68 transport
69 schema:name Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors
70 schema:pagination 232-236
71 schema:productId N37c4764379a641b595b57591ad1be245
72 N555b29d8b0134c3fa28fa090b11d525d
73 N6476d1bd99154b268f1f4a1088fe74a1
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019039848
75 https://doi.org/10.1038/nnano.2011.13
76 schema:sdDatePublished 2022-09-02T15:54
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N38b2baaac61f41b0a800ffb723619050
79 schema:url https://doi.org/10.1038/nnano.2011.13
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N12df7777567b42c1b07354e4bc75953d schema:volumeNumber 6
84 rdf:type schema:PublicationVolume
85 N37c4764379a641b595b57591ad1be245 schema:name doi
86 schema:value 10.1038/nnano.2011.13
87 rdf:type schema:PropertyValue
88 N38b2baaac61f41b0a800ffb723619050 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N4cc3f745fbcc416f988bce279e528f35 rdf:first sg:person.01054462015.95
91 rdf:rest Nfc667f327c7c4410993b6315c7b2af13
92 N555b29d8b0134c3fa28fa090b11d525d schema:name dimensions_id
93 schema:value pub.1019039848
94 rdf:type schema:PropertyValue
95 N6476d1bd99154b268f1f4a1088fe74a1 schema:name pubmed_id
96 schema:value 21336267
97 rdf:type schema:PropertyValue
98 N6674aad8d88f43bab66bcfd5770cb07b schema:issueNumber 4
99 rdf:type schema:PublicationIssue
100 N711b5b05f8854d3bb5271b4964e8124b rdf:first sg:person.01111213505.34
101 rdf:rest rdf:nil
102 Nb01f6a6cfb434e93b1ae0c37c715ba4d rdf:first sg:person.01056746124.41
103 rdf:rest N4cc3f745fbcc416f988bce279e528f35
104 Nfc667f327c7c4410993b6315c7b2af13 rdf:first sg:person.01260575477.34
105 rdf:rest N711b5b05f8854d3bb5271b4964e8124b
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Chemistry (incl. Structural)
111 rdf:type schema:DefinedTerm
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
116 schema:name Electrical and Electronic Engineering
117 rdf:type schema:DefinedTerm
118 sg:grant.3093082 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2011.13
119 rdf:type schema:MonetaryGrant
120 sg:grant.3096025 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2011.13
121 rdf:type schema:MonetaryGrant
122 sg:grant.3104714 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2011.13
123 rdf:type schema:MonetaryGrant
124 sg:journal.1037429 schema:issn 1748-3387
125 1748-3395
126 schema:name Nature Nanotechnology
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01054462015.95 schema:affiliation grid-institutes:grid.69566.3a
130 schema:familyName Hirata
131 schema:givenName Akihiko
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95
133 rdf:type schema:Person
134 sg:person.01056746124.41 schema:affiliation grid-institutes:grid.69566.3a
135 schema:familyName Lang
136 schema:givenName Xingyou
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056746124.41
138 rdf:type schema:Person
139 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.69566.3a
140 schema:familyName Chen
141 schema:givenName Mingwei
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
143 rdf:type schema:Person
144 sg:person.01260575477.34 schema:affiliation grid-institutes:grid.69566.3a
145 schema:familyName Fujita
146 schema:givenName Takeshi
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34
148 rdf:type schema:Person
149 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
150 https://doi.org/10.1007/978-1-4757-3058-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10008-003-0468-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040060429
153 https://doi.org/10.1007/s10008-003-0468-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/35068529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633318
156 https://doi.org/10.1038/35068529
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889034
159 https://doi.org/10.1038/nmat1368
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047825494
162 https://doi.org/10.1038/nmat2297
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nnano.2010.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033903597
165 https://doi.org/10.1038/nnano.2010.162
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
168 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...