Facile synthesis of high-quality graphene nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05

AUTHORS

Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang, Hongjie Dai

ABSTRACT

Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent. The nanoribbons are of very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported so far (up to 5e(2)/h and 1,500 cm(2) V(-1) s(-1) for ribbons 10-20 nm in width). Furthermore, at low temperatures, the nanoribbons show phase-coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons is approximately 2% of the starting raw nanotube soot material, significantly higher than previous methods capable of producing high-quality narrow nanoribbons. The relatively high-yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications. More... »

PAGES

321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2010.54

DOI

http://dx.doi.org/10.1038/nnano.2010.54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035301718

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20364133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "Liying", 
        "id": "sg:person.011563037375.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinran", 
        "id": "sg:person.01014575676.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diankov", 
        "givenName": "Georgi", 
        "id": "sg:person.01327546360.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327546360.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hailiang", 
        "id": "sg:person.01133634533.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Hongjie", 
        "id": "sg:person.01320646106.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-008-8043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003787824", 
          "https://doi.org/10.1007/s12274-008-8043-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-1003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005152700", 
          "https://doi.org/10.1007/s12274-010-1003-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-1003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005152700", 
          "https://doi.org/10.1007/s12274-010-1003-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005726293", 
          "https://doi.org/10.1038/nnano.2008.149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900811r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900811r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja010172b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022347238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja010172b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022347238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033318923", 
          "https://doi.org/10.1038/nature07872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033318923", 
          "https://doi.org/10.1038/nature07872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801316d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036027733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801316d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036027733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080241l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200803003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042009117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2004.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045780530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-008-8036-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047177326", 
          "https://doi.org/10.1007/s12274-008-8036-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-008-8020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049726473", 
          "https://doi.org/10.1007/s12274-008-8020-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9045923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9045923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982025e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056127823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982025e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056127823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803291b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803585s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803585s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901631z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901631z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn8003636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3213350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057919298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.266.5188.1218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent. The nanoribbons are of very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported so far (up to 5e(2)/h and 1,500 cm(2) V(-1) s(-1) for ribbons 10-20 nm in width). Furthermore, at low temperatures, the nanoribbons show phase-coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons is approximately 2% of the starting raw nanotube soot material, significantly higher than previous methods capable of producing high-quality narrow nanoribbons. The relatively high-yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2010.54", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Facile synthesis of high-quality graphene nanoribbons", 
    "pagination": "321", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a8293bb47e8c37a86a7a9c82fdd5c62d5b72d8bc622fe98351d10230762d9ccc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20364133"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2010.54"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035301718"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2010.54", 
      "https://app.dimensions.ai/details/publication/pub.1035301718"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2010.54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.54'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2010.54 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N78444e42600a42c09d5292ae80d9171e
4 schema:citation sg:pub.10.1007/s12274-008-8020-9
5 sg:pub.10.1007/s12274-008-8036-1
6 sg:pub.10.1007/s12274-008-8043-2
7 sg:pub.10.1007/s12274-010-1003-7
8 sg:pub.10.1038/35079517
9 sg:pub.10.1038/nature07872
10 sg:pub.10.1038/nature07919
11 sg:pub.10.1038/nnano.2008.149
12 https://doi.org/10.1002/adma.200803003
13 https://doi.org/10.1016/j.physe.2007.06.020
14 https://doi.org/10.1016/j.physrep.2004.10.006
15 https://doi.org/10.1021/ja010172b
16 https://doi.org/10.1021/ja9045923
17 https://doi.org/10.1021/jp982025e
18 https://doi.org/10.1021/nl080241l
19 https://doi.org/10.1021/nl080583r
20 https://doi.org/10.1021/nl801316d
21 https://doi.org/10.1021/nl803291b
22 https://doi.org/10.1021/nl803585s
23 https://doi.org/10.1021/nl900811r
24 https://doi.org/10.1021/nl901631z
25 https://doi.org/10.1021/nn8003636
26 https://doi.org/10.1063/1.3213350
27 https://doi.org/10.1103/physrevlett.100.206803
28 https://doi.org/10.1103/physrevlett.104.056801
29 https://doi.org/10.1103/physrevlett.82.217
30 https://doi.org/10.1103/physrevlett.98.206805
31 https://doi.org/10.1126/science.1150878
32 https://doi.org/10.1126/science.1170335
33 https://doi.org/10.1126/science.266.5188.1218
34 schema:datePublished 2010-05
35 schema:datePublishedReg 2010-05-01
36 schema:description Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent. The nanoribbons are of very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported so far (up to 5e(2)/h and 1,500 cm(2) V(-1) s(-1) for ribbons 10-20 nm in width). Furthermore, at low temperatures, the nanoribbons show phase-coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons is approximately 2% of the starting raw nanotube soot material, significantly higher than previous methods capable of producing high-quality narrow nanoribbons. The relatively high-yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N925d7c7d79f74c18bd76e583fed2d4a0
41 Nbfb75285fc7548a7b729078f167b9299
42 sg:journal.1037429
43 schema:name Facile synthesis of high-quality graphene nanoribbons
44 schema:pagination 321
45 schema:productId N0e726ba8d9644ffc8bf03b33bd48c179
46 N1cf6da62f9704b51a7eec0c71bcc36e0
47 N2bde1335531b49078007190946fcdd0c
48 N8d64b79cd40940dbb8145f79d2f3706a
49 Nc055756a3ae94601a58009e36b616eb1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035301718
51 https://doi.org/10.1038/nnano.2010.54
52 schema:sdDatePublished 2019-04-11T10:21
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N7b7fd79db37e4d9b92effabdbe3580f0
55 schema:url https://www.nature.com/articles/nnano.2010.54
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N06a7ecd21d324935b78d835ff949de08 rdf:first sg:person.01014575676.43
60 rdf:rest N425ef48f1ff448b4be44e85829a40264
61 N0e726ba8d9644ffc8bf03b33bd48c179 schema:name dimensions_id
62 schema:value pub.1035301718
63 rdf:type schema:PropertyValue
64 N1cf6da62f9704b51a7eec0c71bcc36e0 schema:name readcube_id
65 schema:value a8293bb47e8c37a86a7a9c82fdd5c62d5b72d8bc622fe98351d10230762d9ccc
66 rdf:type schema:PropertyValue
67 N2bde1335531b49078007190946fcdd0c schema:name nlm_unique_id
68 schema:value 101283273
69 rdf:type schema:PropertyValue
70 N425ef48f1ff448b4be44e85829a40264 rdf:first sg:person.01327546360.88
71 rdf:rest Nb7d8aaeeadec4b8c9fec6f2094fb8009
72 N58f360d6fe8644bd963f2b5d0dde9eb2 rdf:first sg:person.01320646106.00
73 rdf:rest rdf:nil
74 N78444e42600a42c09d5292ae80d9171e rdf:first sg:person.011563037375.48
75 rdf:rest N06a7ecd21d324935b78d835ff949de08
76 N7b7fd79db37e4d9b92effabdbe3580f0 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N8d64b79cd40940dbb8145f79d2f3706a schema:name pubmed_id
79 schema:value 20364133
80 rdf:type schema:PropertyValue
81 N925d7c7d79f74c18bd76e583fed2d4a0 schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 Nb7d8aaeeadec4b8c9fec6f2094fb8009 rdf:first sg:person.01133634533.98
84 rdf:rest N58f360d6fe8644bd963f2b5d0dde9eb2
85 Nbfb75285fc7548a7b729078f167b9299 schema:volumeNumber 5
86 rdf:type schema:PublicationVolume
87 Nc055756a3ae94601a58009e36b616eb1 schema:name doi
88 schema:value 10.1038/nnano.2010.54
89 rdf:type schema:PropertyValue
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:journal.1037429 schema:issn 1748-3387
97 1748-3395
98 schema:name Nature Nanotechnology
99 rdf:type schema:Periodical
100 sg:person.01014575676.43 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
101 schema:familyName Wang
102 schema:givenName Xinran
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43
104 rdf:type schema:Person
105 sg:person.01133634533.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
106 schema:familyName Wang
107 schema:givenName Hailiang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133634533.98
109 rdf:type schema:Person
110 sg:person.011563037375.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
111 schema:familyName Jiao
112 schema:givenName Liying
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48
114 rdf:type schema:Person
115 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
116 schema:familyName Dai
117 schema:givenName Hongjie
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
119 rdf:type schema:Person
120 sg:person.01327546360.88 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
121 schema:familyName Diankov
122 schema:givenName Georgi
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327546360.88
124 rdf:type schema:Person
125 sg:pub.10.1007/s12274-008-8020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726473
126 https://doi.org/10.1007/s12274-008-8020-9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s12274-008-8036-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047177326
129 https://doi.org/10.1007/s12274-008-8036-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s12274-008-8043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003787824
132 https://doi.org/10.1007/s12274-008-8043-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s12274-010-1003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005152700
135 https://doi.org/10.1007/s12274-010-1003-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
138 https://doi.org/10.1038/35079517
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature07872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318923
141 https://doi.org/10.1038/nature07872
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
144 https://doi.org/10.1038/nature07919
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nnano.2008.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726293
147 https://doi.org/10.1038/nnano.2008.149
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/adma.200803003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042009117
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.physrep.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045780530
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ja010172b schema:sameAs https://app.dimensions.ai/details/publication/pub.1022347238
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja9045923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055861745
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/jp982025e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056127823
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl080241l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396528
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/nl080583r schema:sameAs https://app.dimensions.ai/details/publication/pub.1049986580
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nl801316d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036027733
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nl803291b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221695
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl803585s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221742
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/nl900811r schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122118
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/nl901631z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222032
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/nn8003636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226866
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.3213350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057919298
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.104.056801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756572
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.82.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819097
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1170335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077248
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.266.5188.1218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549189
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
194 schema:name Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...