Single-layer MoS2 transistors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-30

AUTHORS

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis

ABSTRACT

Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5–3 cm2 V−1 s−1 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm2 V−1 s−1, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting. More... »

PAGES

147-150

Journal

TITLE

Nature Nanotechnology

ISSUE

3

VOLUME

6

Related Patents

  • Thin Film Transistor And Method For Making The Same
  • Gate-Tunable Atomically-Thin Memristors And Methods For Preparing Same And Applications Of Same
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Three-Dimensional Memory Device Having A Transition Metal Dichalcogenide Channel
  • Systems And Methods For Reducing Write Error Rate In Magnetoelectric Random Access Memory Through Pulse Sharpening And Reverse Pulse Schemes
  • Contacts To Transition Metal Dichalcogenide And Manufacturing Methods Thereof
  • Method Of Producing Transition Metal Dichalcogenide Layer
  • Two-Dimensional Transition Metal Dichalcogenide Sheets And Methods Of Preparation And Use
  • Thin Film Transistor
  • Carbon Nanotube Composite Layer
  • Piezoelectric Apparatuses, Systems And Methods Therefor
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Synthesis And Transfer Of Metal Dichalcogenide Layers On Diverse Surfaces
  • Recessed Transistors Containing Ferroelectric Material
  • Method For Functionalizing Transition Metal Dichalcogenides
  • Nanocrystals Containing Cdte Core With Cds And Zns Coatings
  • Memory Cells Comprising Ferroelectric Material And Including Current Leakage Paths Having Different Total Resistances
  • Fet Device Having A Vertical Channel In A 2d Material Layer
  • Reactive Contacts For 2d Layered Metal Dichalcogenides
  • Impact Ionization Semiconductor Device And Manufacturing Method Thereof
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Thin Film Transition Metal Dichalcogenides And Methods
  • Charge Coupled Device Based On Atomically Layered Van Der Waals Solid State Film For Opto-Electronic Memory And Image Capture
  • Low-Dimensional Material Chemical Vapor Sensors
  • Carbon Nanotube Composite Layer
  • An Apparatus And Method For Sensing
  • Gate-Tunable P-N Heterojunction Diode, And Fabrication Method And Application Of Same
  • Systems And Methods For Implementing Robust Magnetoelectric Junctions
  • Tunneling Devices And Methods Of Manufacturing The Same
  • Systems For Implementing Word Line Pulse Techniques In Magnetoelectric Junctions
  • Systems And Methods For Implementing Select Devices Constructed From 2d Materials
  • Growth Methods For Controlled Large-Area Fabrication Of High-Quality Graphene Analogs
  • Method Of Preparing Metal Diboride Dispersions And Films
  • All 2d, High Mobility, Flexible, Transparent Thin Film Transistor
  • Field-Effect Transistors Having Transition Metal Dichalcogenide Channels And Methods Of Manufacture
  • Thin Film Transistor
  • Semiconductor Device
  • Impact Ionization Semiconductor Device And Manufacturing Method Thereof
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Systems And Methods For Implementing Efficient Magnetoelectric Junctions
  • Molybdenum Disulfide Film Formation And Transfer To A Substrate
  • Transistor Device And Materials For Making
  • Synthesis And Fabrication Of Transition Metal Dichalcogenide Structures
  • Transition Metal Dichalcogenide Aerogels And Methods Of Preparation And Use
  • Memory Device Based On Heterostructures Of Ferroelectric And Two-Dimensional Materials
  • Low-Dimensional Material Chemical Vapor Sensors
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2010.279

    DOI

    http://dx.doi.org/10.1038/nnano.2010.279

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047704758

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21278752


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disulfides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Graphite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molybdenum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotubes, Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon Dioxide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transistors, Electronic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radisavljevic", 
            "givenName": "B.", 
            "id": "sg:person.01036404030.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036404030.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radenovic", 
            "givenName": "A.", 
            "id": "sg:person.0773042235.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brivio", 
            "givenName": "J.", 
            "id": "sg:person.0677560306.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677560306.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giacometti", 
            "givenName": "V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kis", 
            "givenName": "A.", 
            "id": "sg:person.0731604571.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature09405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275519", 
              "https://doi.org/10.1038/nature09405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023528767", 
              "https://doi.org/10.1038/nature07919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000094388", 
              "https://doi.org/10.1038/nature08522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029944948", 
              "https://doi.org/10.1038/nature01996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011423110", 
              "https://doi.org/10.1038/nnano.2010.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043686943", 
              "https://doi.org/10.1038/nature08105"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-30", 
        "datePublishedReg": "2011-01-30", 
        "description": "Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8\u00a0eV (ref.\u00a016), previously reported mobilities in the 0.5\u20133\u00a0cm2\u00a0V\u22121\u00a0s\u22121 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200\u00a0cm2\u00a0V\u22121\u00a0s\u22121, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1\u00a0\u00d7\u00a0108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3779198", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "two-dimensional materials", 
          "monolayer MoS2", 
          "next-generation nanoelectronic devices", 
          "large intrinsic bandgap", 
          "oxide gate dielectrics", 
          "low power consumption", 
          "standby power dissipation", 
          "one-dimensional materials", 
          "single-layer MoS2 transistors", 
          "nanoelectronic devices", 
          "pristine graphene", 
          "fabrication complexity", 
          "transparent semiconductor", 
          "intrinsic bandgap", 
          "MoS2 transistors", 
          "graphene nanoribbons", 
          "classical transistors", 
          "strained silicon", 
          "gate dielectric", 
          "energy harvesting", 
          "practical devices", 
          "power consumption", 
          "MoS2", 
          "power dissipation", 
          "graphene", 
          "transistors", 
          "bandgap", 
          "single layer", 
          "devices", 
          "cm2", 
          "optoelectronics", 
          "nanoribbons", 
          "semiconductors", 
          "mobility", 
          "applications", 
          "silicon", 
          "materials", 
          "dielectric", 
          "complex structure", 
          "harvesting", 
          "dissipation", 
          "layer", 
          "current", 
          "properties", 
          "consumption", 
          "structure", 
          "ratio", 
          "complexity", 
          "use", 
          "levels", 
          "high mobility6", 
          "mobility6", 
          "transistors7", 
          "graphene bandgap increases fabrication complexity", 
          "bandgap increases fabrication complexity", 
          "increases fabrication complexity", 
          "range17", 
          "halfnium oxide gate dielectric", 
          "room-temperature single-layer MoS2 mobility", 
          "single-layer MoS2 mobility", 
          "MoS2 mobility", 
          "room-temperature current", 
          "interband tunnel FETs19", 
          "tunnel FETs19", 
          "FETs19", 
          "thin transparent semiconductors"
        ], 
        "name": "Single-layer MoS2 transistors", 
        "pagination": "147-150", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047704758"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2010.279"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21278752"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2010.279", 
          "https://app.dimensions.ai/details/publication/pub.1047704758"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_530.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2010.279"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      22 PREDICATES      115 URIs      98 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2010.279 schema:about N0cec782a1b0e4ce385223558dedcd545
    2 N10f7ce77443845248bf1d989cfb7c26a
    3 N36f7d2ba1bbf41318fcefadbab94f639
    4 N48594d5326da4af6a7658e8c1bf7adf9
    5 N4bd6f5daf54c45d2a14409fdb91df0c3
    6 N63942e976dde487a8eb1673cfffe1914
    7 N727e3820027142ffb5e3221db8352f86
    8 N840a902ed17c4653ac54cb7c4b1bb062
    9 N9bd01035ea4e40dab7650014e62dfd2c
    10 N9c8e2856e4234f2e936418b638b93469
    11 Nc77af423badd43e4b7e354dcd636a315
    12 Nd0770ccf2ac14595bead528bc5027787
    13 Ne2c3974ad2634f57b1e304a3e5db7172
    14 Ne8cf20089fe7494fba5f0d33e71b196a
    15 anzsrc-for:09
    16 anzsrc-for:0912
    17 schema:author N6c3bf0ab160d4fd2be1de7632e537787
    18 schema:citation sg:pub.10.1038/nature01996
    19 sg:pub.10.1038/nature04233
    20 sg:pub.10.1038/nature04235
    21 sg:pub.10.1038/nature07919
    22 sg:pub.10.1038/nature08105
    23 sg:pub.10.1038/nature08522
    24 sg:pub.10.1038/nature09405
    25 sg:pub.10.1038/nnano.2010.172
    26 sg:pub.10.1038/nnano.2010.89
    27 schema:datePublished 2011-01-30
    28 schema:datePublishedReg 2011-01-30
    29 schema:description Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5–3 cm2 V−1 s−1 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm2 V−1 s−1, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N672602fa21ee4989b2e5cc1583d82f51
    34 Nc616d3a8306d4808a9b5206420267c5b
    35 sg:journal.1037429
    36 schema:keywords FETs19
    37 MoS2
    38 MoS2 mobility
    39 MoS2 transistors
    40 applications
    41 bandgap
    42 bandgap increases fabrication complexity
    43 classical transistors
    44 cm2
    45 complex structure
    46 complexity
    47 consumption
    48 current
    49 devices
    50 dielectric
    51 dissipation
    52 energy harvesting
    53 fabrication complexity
    54 gate dielectric
    55 graphene
    56 graphene bandgap increases fabrication complexity
    57 graphene nanoribbons
    58 halfnium oxide gate dielectric
    59 harvesting
    60 high mobility6
    61 increases fabrication complexity
    62 interband tunnel FETs19
    63 intrinsic bandgap
    64 large intrinsic bandgap
    65 layer
    66 levels
    67 low power consumption
    68 materials
    69 mobility
    70 mobility6
    71 monolayer MoS2
    72 nanoelectronic devices
    73 nanoribbons
    74 next-generation nanoelectronic devices
    75 one-dimensional materials
    76 optoelectronics
    77 oxide gate dielectrics
    78 power consumption
    79 power dissipation
    80 practical devices
    81 pristine graphene
    82 properties
    83 range17
    84 ratio
    85 room-temperature current
    86 room-temperature single-layer MoS2 mobility
    87 semiconductors
    88 silicon
    89 single layer
    90 single-layer MoS2 mobility
    91 single-layer MoS2 transistors
    92 standby power dissipation
    93 strained silicon
    94 structure
    95 thin transparent semiconductors
    96 transistors
    97 transistors7
    98 transparent semiconductor
    99 tunnel FETs19
    100 two-dimensional materials
    101 use
    102 schema:name Single-layer MoS2 transistors
    103 schema:pagination 147-150
    104 schema:productId N121a8c10f58847989fde894d225d9d5c
    105 N29796040f2434821bd3c1b45b73552fb
    106 N6ef4649b752549d19a8ee66eb93da0df
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    108 https://doi.org/10.1038/nnano.2010.279
    109 schema:sdDatePublished 2021-12-01T19:24
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nb92911b94f8c4f89a8969889a3c810c9
    112 schema:url https://doi.org/10.1038/nnano.2010.279
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N0cec782a1b0e4ce385223558dedcd545 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Equipment Design
    118 rdf:type schema:DefinedTerm
    119 N10f7ce77443845248bf1d989cfb7c26a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Nanostructures
    121 rdf:type schema:DefinedTerm
    122 N121a8c10f58847989fde894d225d9d5c schema:name pubmed_id
    123 schema:value 21278752
    124 rdf:type schema:PropertyValue
    125 N29796040f2434821bd3c1b45b73552fb schema:name doi
    126 schema:value 10.1038/nnano.2010.279
    127 rdf:type schema:PropertyValue
    128 N36f7d2ba1bbf41318fcefadbab94f639 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Temperature
    130 rdf:type schema:DefinedTerm
    131 N48594d5326da4af6a7658e8c1bf7adf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Semiconductors
    133 rdf:type schema:DefinedTerm
    134 N4bd6f5daf54c45d2a14409fdb91df0c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Silicon Dioxide
    136 rdf:type schema:DefinedTerm
    137 N4da5e83ad01045c79f36dd8ecec8338f rdf:first sg:person.0731604571.13
    138 rdf:rest rdf:nil
    139 N63942e976dde487a8eb1673cfffe1914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Surface Properties
    141 rdf:type schema:DefinedTerm
    142 N672602fa21ee4989b2e5cc1583d82f51 schema:issueNumber 3
    143 rdf:type schema:PublicationIssue
    144 N6c3bf0ab160d4fd2be1de7632e537787 rdf:first sg:person.01036404030.12
    145 rdf:rest N8efad7df71f547d69974ce6f55b09dbd
    146 N6ef4649b752549d19a8ee66eb93da0df schema:name dimensions_id
    147 schema:value pub.1047704758
    148 rdf:type schema:PropertyValue
    149 N727e3820027142ffb5e3221db8352f86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Disulfides
    151 rdf:type schema:DefinedTerm
    152 N83904ba579b74d95bfc4f64715f56e52 schema:affiliation grid-institutes:grid.5333.6
    153 schema:familyName Giacometti
    154 schema:givenName V.
    155 rdf:type schema:Person
    156 N840a902ed17c4653ac54cb7c4b1bb062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Graphite
    158 rdf:type schema:DefinedTerm
    159 N8efad7df71f547d69974ce6f55b09dbd rdf:first sg:person.0773042235.60
    160 rdf:rest Ndc84f0bea23f4cc5b4882d940e9791b6
    161 N9a81fa7763264e378941cf8825436ba3 rdf:first N83904ba579b74d95bfc4f64715f56e52
    162 rdf:rest N4da5e83ad01045c79f36dd8ecec8338f
    163 N9bd01035ea4e40dab7650014e62dfd2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Molybdenum
    165 rdf:type schema:DefinedTerm
    166 N9c8e2856e4234f2e936418b638b93469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Nanotechnology
    168 rdf:type schema:DefinedTerm
    169 Nb92911b94f8c4f89a8969889a3c810c9 schema:name Springer Nature - SN SciGraph project
    170 rdf:type schema:Organization
    171 Nc616d3a8306d4808a9b5206420267c5b schema:volumeNumber 6
    172 rdf:type schema:PublicationVolume
    173 Nc77af423badd43e4b7e354dcd636a315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Transistors, Electronic
    175 rdf:type schema:DefinedTerm
    176 Nd0770ccf2ac14595bead528bc5027787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Microscopy, Atomic Force
    178 rdf:type schema:DefinedTerm
    179 Ndc84f0bea23f4cc5b4882d940e9791b6 rdf:first sg:person.0677560306.12
    180 rdf:rest N9a81fa7763264e378941cf8825436ba3
    181 Ne2c3974ad2634f57b1e304a3e5db7172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Silicon
    183 rdf:type schema:DefinedTerm
    184 Ne8cf20089fe7494fba5f0d33e71b196a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Nanotubes, Carbon
    186 rdf:type schema:DefinedTerm
    187 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    188 schema:name Engineering
    189 rdf:type schema:DefinedTerm
    190 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    191 schema:name Materials Engineering
    192 rdf:type schema:DefinedTerm
    193 sg:grant.3779198 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2010.279
    194 rdf:type schema:MonetaryGrant
    195 sg:journal.1037429 schema:issn 1748-3387
    196 1748-3395
    197 schema:name Nature Nanotechnology
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.01036404030.12 schema:affiliation grid-institutes:grid.5333.6
    201 schema:familyName Radisavljevic
    202 schema:givenName B.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036404030.12
    204 rdf:type schema:Person
    205 sg:person.0677560306.12 schema:affiliation grid-institutes:grid.5333.6
    206 schema:familyName Brivio
    207 schema:givenName J.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677560306.12
    209 rdf:type schema:Person
    210 sg:person.0731604571.13 schema:affiliation grid-institutes:grid.5333.6
    211 schema:familyName Kis
    212 schema:givenName A.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13
    214 rdf:type schema:Person
    215 sg:person.0773042235.60 schema:affiliation grid-institutes:grid.5333.6
    216 schema:familyName Radenovic
    217 schema:givenName A.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60
    219 rdf:type schema:Person
    220 sg:pub.10.1038/nature01996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029944948
    221 https://doi.org/10.1038/nature01996
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    224 https://doi.org/10.1038/nature04233
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    227 https://doi.org/10.1038/nature04235
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
    230 https://doi.org/10.1038/nature07919
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
    233 https://doi.org/10.1038/nature08105
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature08522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094388
    236 https://doi.org/10.1038/nature08522
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature09405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275519
    239 https://doi.org/10.1038/nature09405
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
    242 https://doi.org/10.1038/nnano.2010.172
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
    245 https://doi.org/10.1038/nnano.2010.89
    246 rdf:type schema:CreativeWork
    247 grid-institutes:grid.5333.6 schema:alternateName Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    248 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    249 schema:name Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    250 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...