Single-layer MoS2 transistors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-30

AUTHORS

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis

ABSTRACT

Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5–3 cm2 V−1 s−1 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm2 V−1 s−1, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting. More... »

PAGES

147-150

Journal

TITLE

Nature Nanotechnology

ISSUE

3

VOLUME

6

Related Patents

  • Superlattice Structure Including Two-Dimensional Material And Device Including The Superlattice Structure
  • Two-Dimensional Transition Metal Dichalcogenide Sheets And Methods Of Preparation And Use
  • Systems And Methods For Reducing Write Error Rate In Magnetoelectric Random Access Memory Through Pulse Sharpening And Reverse Pulse Schemes
  • Thin Film Transistor
  • Semiconductor Device And Method For Manufacturing A Semiconductor Device
  • Thin Film Transistor And Method For Making The Same
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Method Of Producing Transition Metal Dichalcogenide Layer
  • Contacts To Transition Metal Dichalcogenide And Manufacturing Methods Thereof
  • Three-Dimensional Memory Device Having A Transition Metal Dichalcogenide Channel
  • Gate-Tunable Atomically-Thin Memristors And Methods For Preparing Same And Applications Of Same
  • Method For Functionalizing Transition Metal Dichalcogenides
  • Ferroelectric Memory Devices Containing A Two-Dimensional Charge Carrier Gas Channel And Methods Of Making The Same
  • Recessed Transistors Containing Ferroelectric Material
  • Memory Cells Comprising Ferroelectric Material And Including Current Leakage Paths Having Different Total Resistances
  • Reactive Contacts For 2d Layered Metal Dichalcogenides
  • Field-Effect Transistors Having Transition Metal Dichalcogenide Channels And Methods Of Manufacture
  • Impact Ionization Semiconductor Device And Manufacturing Method Thereof
  • Piezoelectric Apparatuses, Systems And Methods Therefor
  • Synthesis And Transfer Of Metal Dichalcogenide Layers On Diverse Surfaces
  • Carbon Nanotube Composite Layer
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Layered-Substance-Containing Solution And Method Of Manufacturing Same
  • Fet Device Having A Vertical Channel In A 2d Material Layer
  • Nanocrystals Containing Cdte Core With Cds And Zns Coatings
  • Array Of Cross Point Memory Cells
  • Charge Coupled Device Based On Atomically Layered Van Der Waals Solid State Film For Opto-Electronic Memory And Image Capture
  • Mos2 Based Photosensor For Detecting Both Light Wavelength And Intensity
  • An Apparatus And Method For Sensing
  • Thin Film Transistor And Method For Making The Same
  • Thin Film Transition Metal Dichalcogenides And Methods
  • Carbon Nanotube Composite Layer
  • Gate-Tunable P-N Heterojunction Diode, And Fabrication Method And Application Of Same
  • Ferroelectric Memory Devices Containing A Two-Dimensional Charge Carrier Gas Channel And Methods Of Making The Same
  • Semiconductor Device And Method Of Manufacturing Semiconductor Device
  • Memory Cells
  • Low-Dimensional Material Chemical Vapor Sensors
  • Memory Cells And Methods Of Forming A Capacitor Including Current Leakage Paths Having Different Total Resistances
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Systems And Methods For Implementing Select Devices Constructed From 2d Materials
  • Growth Methods For Controlled Large-Area Fabrication Of High-Quality Graphene Analogs
  • Tunneling Devices And Methods Of Manufacturing The Same
  • Thin Film Transistor
  • Method Of Preparing Metal Diboride Dispersions And Films
  • All 2d, High Mobility, Flexible, Transparent Thin Film Transistor
  • Systems For Implementing Word Line Pulse Techniques In Magnetoelectric Junctions
  • Systems And Methods For Implementing Robust Magnetoelectric Junctions
  • Semiconductor Device And Method Of Manufacturing Semiconductor Device
  • Semiconductor Device
  • Field-Effect Transistors Having Transition Metal Dichalcogenide Channels And Methods Of Manufacture
  • Impact Ionization Semiconductor Device And Manufacturing Method Thereof
  • Systems And Methods For Implementing Efficient Magnetoelectric Junctions
  • Field-Effect Transistors Having Transition Metal Dichalcogenide Channels And Methods Of Manufacture
  • Inverter Including Depletion Load Having Photosensitive Channel Layer And Enhancement Driver Having Light Shielding Layer And Photo Detector Using The Same
  • Transition Metal Dichalcogenide Aerogels And Methods Of Preparation And Use
  • Method And System For Generating A Photo-Response From Mos2 Schottky Junctions
  • Transistor Device And Materials For Making
  • Systems And Methods For Optimizing Magnetic Torque And Pulse Shaping For Reducing Write Error Rate In Magnetoelectric Random Access Memory
  • Molybdenum Disulfide Film Formation And Transfer To A Substrate
  • Low-Dimensional Material Chemical Vapor Sensors
  • Memory Device Based On Heterostructures Of Ferroelectric And Two-Dimensional Materials
  • Synthesis And Fabrication Of Transition Metal Dichalcogenide Structures
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Impact Ionization Semiconductor Device And Manufacturing Method Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2010.279

    DOI

    http://dx.doi.org/10.1038/nnano.2010.279

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047704758

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21278752


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disulfides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Graphite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molybdenum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotubes, Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon Dioxide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transistors, Electronic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radisavljevic", 
            "givenName": "B.", 
            "id": "sg:person.01036404030.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036404030.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radenovic", 
            "givenName": "A.", 
            "id": "sg:person.0773042235.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brivio", 
            "givenName": "J.", 
            "id": "sg:person.0677560306.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677560306.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giacometti", 
            "givenName": "V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kis", 
            "givenName": "A.", 
            "id": "sg:person.0731604571.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature01996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029944948", 
              "https://doi.org/10.1038/nature01996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043686943", 
              "https://doi.org/10.1038/nature08105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000094388", 
              "https://doi.org/10.1038/nature08522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011423110", 
              "https://doi.org/10.1038/nnano.2010.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275519", 
              "https://doi.org/10.1038/nature09405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023528767", 
              "https://doi.org/10.1038/nature07919"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-30", 
        "datePublishedReg": "2011-01-30", 
        "description": "Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8\u00a0eV (ref.\u00a016), previously reported mobilities in the 0.5\u20133\u00a0cm2\u00a0V\u22121\u00a0s\u22121 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200\u00a0cm2\u00a0V\u22121\u00a0s\u22121, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1\u00a0\u00d7\u00a0108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3779198", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "two-dimensional materials", 
          "monolayer MoS2", 
          "next-generation nanoelectronic devices", 
          "large intrinsic bandgap", 
          "oxide gate dielectrics", 
          "low power consumption", 
          "standby power dissipation", 
          "one-dimensional materials", 
          "nanoelectronic devices", 
          "single-layer MoS2 transistors", 
          "pristine graphene", 
          "fabrication complexity", 
          "transparent semiconductor", 
          "MoS2 transistors", 
          "intrinsic bandgap", 
          "graphene nanoribbons", 
          "classical transistors", 
          "gate dielectric", 
          "strained silicon", 
          "energy harvesting", 
          "practical devices", 
          "power consumption", 
          "MoS2", 
          "power dissipation", 
          "graphene", 
          "transistors", 
          "bandgap", 
          "single layer", 
          "devices", 
          "cm2", 
          "optoelectronics", 
          "nanoribbons", 
          "semiconductors", 
          "mobility", 
          "applications", 
          "materials", 
          "silicon", 
          "dielectric", 
          "complex structure", 
          "harvesting", 
          "dissipation", 
          "layer", 
          "current", 
          "properties", 
          "consumption", 
          "structure", 
          "ratio", 
          "complexity", 
          "use", 
          "levels"
        ], 
        "name": "Single-layer MoS2 transistors", 
        "pagination": "147-150", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047704758"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2010.279"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21278752"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2010.279", 
          "https://app.dimensions.ai/details/publication/pub.1047704758"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_550.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2010.279"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2010.279'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      98 URIs      81 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2010.279 schema:about N00da7345bd774d55a95311db80ec4033
    2 N1935acf6a93a4ba08065b6fdbeae0701
    3 N268eadca40c44c188d5cf91da780b3ee
    4 N360fd99362ea4bf0bb61ae56d1c1a59b
    5 N37e4bccfc9444b19b17c03b70c9cc406
    6 N63c3713936294a09a6d91d829f198351
    7 N7057687b1e8e485687f0bfa7f1fe0666
    8 N72238c7fe1a44ac48f7868185d92348a
    9 Nabefdc36b2f44912bd76cce07372df40
    10 Nbf0353de76d14e45aa07d82551b2adf5
    11 Nd3d2be97216e401fa6909db0a1787484
    12 Ne0afbf7ad3e74be7b3e78ffb36632f51
    13 Nf2f069af76ea4a328292aa17da572ebf
    14 Nf30fa120f19547b385f649e5e746a2aa
    15 anzsrc-for:09
    16 anzsrc-for:0912
    17 schema:author N178af4b999ca47bf8964bbad683a0ef4
    18 schema:citation sg:pub.10.1038/nature01996
    19 sg:pub.10.1038/nature04233
    20 sg:pub.10.1038/nature04235
    21 sg:pub.10.1038/nature07919
    22 sg:pub.10.1038/nature08105
    23 sg:pub.10.1038/nature08522
    24 sg:pub.10.1038/nature09405
    25 sg:pub.10.1038/nnano.2010.172
    26 sg:pub.10.1038/nnano.2010.89
    27 schema:datePublished 2011-01-30
    28 schema:datePublishedReg 2011-01-30
    29 schema:description Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5–3 cm2 V−1 s−1 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm2 V−1 s−1, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf Nb9cc548e8b3947bb918716b39f715fab
    33 Nf09e2fcb0c8f4fb2b04751a6c0e22313
    34 sg:journal.1037429
    35 schema:keywords MoS2
    36 MoS2 transistors
    37 applications
    38 bandgap
    39 classical transistors
    40 cm2
    41 complex structure
    42 complexity
    43 consumption
    44 current
    45 devices
    46 dielectric
    47 dissipation
    48 energy harvesting
    49 fabrication complexity
    50 gate dielectric
    51 graphene
    52 graphene nanoribbons
    53 harvesting
    54 intrinsic bandgap
    55 large intrinsic bandgap
    56 layer
    57 levels
    58 low power consumption
    59 materials
    60 mobility
    61 monolayer MoS2
    62 nanoelectronic devices
    63 nanoribbons
    64 next-generation nanoelectronic devices
    65 one-dimensional materials
    66 optoelectronics
    67 oxide gate dielectrics
    68 power consumption
    69 power dissipation
    70 practical devices
    71 pristine graphene
    72 properties
    73 ratio
    74 semiconductors
    75 silicon
    76 single layer
    77 single-layer MoS2 transistors
    78 standby power dissipation
    79 strained silicon
    80 structure
    81 transistors
    82 transparent semiconductor
    83 two-dimensional materials
    84 use
    85 schema:name Single-layer MoS2 transistors
    86 schema:pagination 147-150
    87 schema:productId N472cafe4356242fa9b94eb281577a870
    88 N8a51e2bd848c439a98729a335923206f
    89 Nc115ec5d2f5a43ce8f218e89a3451a8b
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    91 https://doi.org/10.1038/nnano.2010.279
    92 schema:sdDatePublished 2022-11-24T20:56
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N20db51fc0fcb4da8a7dbaafa88d1a83b
    95 schema:url https://doi.org/10.1038/nnano.2010.279
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N00da7345bd774d55a95311db80ec4033 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Nanotubes, Carbon
    101 rdf:type schema:DefinedTerm
    102 N178af4b999ca47bf8964bbad683a0ef4 rdf:first sg:person.01036404030.12
    103 rdf:rest Nfb4053981ee548e9b5d69a6d5754b2cd
    104 N1935acf6a93a4ba08065b6fdbeae0701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Microscopy, Atomic Force
    106 rdf:type schema:DefinedTerm
    107 N20db51fc0fcb4da8a7dbaafa88d1a83b schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N21f5c14ad1504485838974a58afe8426 rdf:first sg:person.0731604571.13
    110 rdf:rest rdf:nil
    111 N268eadca40c44c188d5cf91da780b3ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Equipment Design
    113 rdf:type schema:DefinedTerm
    114 N360fd99362ea4bf0bb61ae56d1c1a59b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Temperature
    116 rdf:type schema:DefinedTerm
    117 N37e4bccfc9444b19b17c03b70c9cc406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Nanostructures
    119 rdf:type schema:DefinedTerm
    120 N3d69bdbe631d47cf8ded6a409aa6baa2 schema:affiliation grid-institutes:grid.5333.6
    121 schema:familyName Giacometti
    122 schema:givenName V.
    123 rdf:type schema:Person
    124 N472cafe4356242fa9b94eb281577a870 schema:name dimensions_id
    125 schema:value pub.1047704758
    126 rdf:type schema:PropertyValue
    127 N63c3713936294a09a6d91d829f198351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Semiconductors
    129 rdf:type schema:DefinedTerm
    130 N7057687b1e8e485687f0bfa7f1fe0666 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Molybdenum
    132 rdf:type schema:DefinedTerm
    133 N72238c7fe1a44ac48f7868185d92348a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Transistors, Electronic
    135 rdf:type schema:DefinedTerm
    136 N8a51e2bd848c439a98729a335923206f schema:name doi
    137 schema:value 10.1038/nnano.2010.279
    138 rdf:type schema:PropertyValue
    139 N9bf6b96d84524dd490db72ba6877ef18 rdf:first N3d69bdbe631d47cf8ded6a409aa6baa2
    140 rdf:rest N21f5c14ad1504485838974a58afe8426
    141 Nabefdc36b2f44912bd76cce07372df40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Surface Properties
    143 rdf:type schema:DefinedTerm
    144 Nb9cc548e8b3947bb918716b39f715fab schema:volumeNumber 6
    145 rdf:type schema:PublicationVolume
    146 Nbf0353de76d14e45aa07d82551b2adf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Nanotechnology
    148 rdf:type schema:DefinedTerm
    149 Nc115ec5d2f5a43ce8f218e89a3451a8b schema:name pubmed_id
    150 schema:value 21278752
    151 rdf:type schema:PropertyValue
    152 Nd3d2be97216e401fa6909db0a1787484 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Silicon
    154 rdf:type schema:DefinedTerm
    155 Ne0afbf7ad3e74be7b3e78ffb36632f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Graphite
    157 rdf:type schema:DefinedTerm
    158 Ne6531d9b89504d038e2dd603aac7513f rdf:first sg:person.0677560306.12
    159 rdf:rest N9bf6b96d84524dd490db72ba6877ef18
    160 Nf09e2fcb0c8f4fb2b04751a6c0e22313 schema:issueNumber 3
    161 rdf:type schema:PublicationIssue
    162 Nf2f069af76ea4a328292aa17da572ebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Silicon Dioxide
    164 rdf:type schema:DefinedTerm
    165 Nf30fa120f19547b385f649e5e746a2aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Disulfides
    167 rdf:type schema:DefinedTerm
    168 Nfb4053981ee548e9b5d69a6d5754b2cd rdf:first sg:person.0773042235.60
    169 rdf:rest Ne6531d9b89504d038e2dd603aac7513f
    170 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Engineering
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Materials Engineering
    175 rdf:type schema:DefinedTerm
    176 sg:grant.3779198 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2010.279
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1037429 schema:issn 1748-3387
    179 1748-3395
    180 schema:name Nature Nanotechnology
    181 schema:publisher Springer Nature
    182 rdf:type schema:Periodical
    183 sg:person.01036404030.12 schema:affiliation grid-institutes:grid.5333.6
    184 schema:familyName Radisavljevic
    185 schema:givenName B.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036404030.12
    187 rdf:type schema:Person
    188 sg:person.0677560306.12 schema:affiliation grid-institutes:grid.5333.6
    189 schema:familyName Brivio
    190 schema:givenName J.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677560306.12
    192 rdf:type schema:Person
    193 sg:person.0731604571.13 schema:affiliation grid-institutes:grid.5333.6
    194 schema:familyName Kis
    195 schema:givenName A.
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731604571.13
    197 rdf:type schema:Person
    198 sg:person.0773042235.60 schema:affiliation grid-institutes:grid.5333.6
    199 schema:familyName Radenovic
    200 schema:givenName A.
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773042235.60
    202 rdf:type schema:Person
    203 sg:pub.10.1038/nature01996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029944948
    204 https://doi.org/10.1038/nature01996
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    207 https://doi.org/10.1038/nature04233
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    210 https://doi.org/10.1038/nature04235
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
    213 https://doi.org/10.1038/nature07919
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
    216 https://doi.org/10.1038/nature08105
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature08522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094388
    219 https://doi.org/10.1038/nature08522
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature09405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275519
    222 https://doi.org/10.1038/nature09405
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
    225 https://doi.org/10.1038/nnano.2010.172
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
    228 https://doi.org/10.1038/nnano.2010.89
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.5333.6 schema:alternateName Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    231 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    232 schema:name Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    233 Institute of Biotechnology, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...