Chemical methods for the production of graphenes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03-29

AUTHORS

Sungjin Park, Rodney S. Ruoff

ABSTRACT

Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications. More... »

PAGES

217-224

Journal

TITLE

Nature Nanotechnology

ISSUE

4

VOLUME

4

Related Patents

  • Crystalline Graphene And Method Of Making Crystalline Graphene
  • Production Of Graphene And Graphane
  • Real-Time Detection Of Water Contaminants
  • System For Detecting Rare Cells
  • Graphene Oxide
  • Graphene-Based Films In Sensor Applications
  • Composite
  • Graphene Nanodispersion And Method For Preparing Same
  • Compositions Of Graphene Materials With Metal Nanostructures And Microstructures And Methods Of Making And Using Including Pressure Sensors
  • Method Of Production Of Graphite Oxide And Uses Thereof
  • Granules Of Graphene Oxide By Spray Drying
  • Method For Preparing Graphene
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid Three-Dimensional Architecture For Energy Storage Devices
  • Wearable Graphene Sensors
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Apparatus And Associated Methods
  • Microfluidic Device And Method For Detecting Rare Cells
  • Process For The Production Of Carbon Graphenes And Other Nanomaterials
  • Method Of Production Of Graphite Oxide And Uses Thereof
  • Methods Of Forming Graphene By Graphite Exfoliation
  • Method Of Graphene Manufacturing
  • Graphene Hybrid Materials, Apparatuses, Systems And Methods
  • Production Of Graphene From Metal Alkoxide
  • Production Of Graphene
  • Graphene Defect Detection
  • High-Throughput Graphene Printing And Selective Transfer Using A Localized Laser Heating Technique
  • Graphite Oxide Coated Particulate Material And Method Of Making Thereof
  • Hybrid Nanomaterial Of Graphene Oxide Nanomaterial And Cationic Quaternized Chitosan
  • Battery With Hybrid Electrocatalysts
  • Method For Fabricating Graphene Sheets Or Graphene Particles Using Supercritical Fluid
  • Secondary Battery
  • Process For The Production Of Carbon Nanoparticles And Sequestration Of Carbon
  • Inkjet-Printed Flexible Electronic Components From Graphene Oxide
  • Functionalized Graphene Oxide System For Detecting Rare Cells
  • Graphene Structures With Enhanced Stability And Composite Materials Formed Therefrom
  • Alteration Of Graphene Defects
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Functionalised Graphene
  • System For Detecting Rare Cells
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • Production Of Graphene
  • System For Detecting Rare Cells
  • Method Of Preparing Carbon Thin Film, Electronics Comprising Carbon Thin Film, And Electrochemical Device Comprising Carbon Thin Film
  • Graphene Nanomesh And Method Of Making The Same
  • Alteration Of Graphene Defects
  • Crumpled Particles, Methods Of Synthesizing Same And Applications Using Same
  • Granules Of Graphene Oxide By Spray Drying
  • Method Of Making Nanomaterials From A Renewable Carbon Source
  • Nanomaterials And Process For Making The Same
  • Graphene Defect Alteration
  • Method For Producing Few-Layer Graphene
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Microfluidic Device And Method For Detecting Rare Cells
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Methods Of Making Composite Of Graphene Oxide And Nanostructures
  • Novel Graphene Nanodispersion And Method For Preparing Same
  • Methods Of Forming Graphene
  • Electrochemical Method For The Production Of Graphene Composites And Cell For Conducting The Same
  • Compositions Of Graphene Materials With Metal Nanostructures And Microstructures And Methods Of Making And Using Including Pressure Sensors
  • Strongly Coupled Inorganic-Graphene Hybrid Materials, Apparatuses, Systems And Methods
  • Functionalized Graphene And Methods Of Manufacturing The Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2009.58

    DOI

    http://dx.doi.org/10.1038/nnano.2009.58

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034387569

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19350030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Graphite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Sungjin", 
            "id": "sg:person.013131474507.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131474507.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruoff", 
            "givenName": "Rodney S.", 
            "id": "sg:person.01143405465.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143405465.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2008.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016244742", 
              "https://doi.org/10.1038/nnano.2008.329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035065688", 
              "https://doi.org/10.1038/nnano.2008.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032209533", 
              "https://doi.org/10.1038/nnano.2008.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001026324", 
              "https://doi.org/10.1038/nnano.2008.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521124", 
              "https://doi.org/10.1038/nature07719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036191349", 
              "https://doi.org/10.1038/nmat2166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037486815", 
              "https://doi.org/10.1038/nnano.2008.365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073448", 
              "https://doi.org/10.1038/nature06016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027154969", 
              "https://doi.org/10.1038/nnano.2008.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-03-29", 
        "datePublishedReg": "2009-03-29", 
        "description": "Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2009.58", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "high specific surface area", 
          "production of graphene", 
          "derivatives of graphite", 
          "specific surface area", 
          "graphene center", 
          "chemical functionalization", 
          "graphene", 
          "chemical methods", 
          "optical properties", 
          "surface area", 
          "colloidal suspensions", 
          "new materials", 
          "graphite", 
          "functionalization", 
          "properties", 
          "different advantages", 
          "derivatives", 
          "number of methods", 
          "wide variety", 
          "applications", 
          "materials", 
          "suspension", 
          "advantages", 
          "method", 
          "production", 
          "disadvantages", 
          "interest", 
          "variety", 
          "ability", 
          "area", 
          "approach", 
          "use", 
          "center", 
          "number"
        ], 
        "name": "Chemical methods for the production of graphenes", 
        "pagination": "217-224", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034387569"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2009.58"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19350030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2009.58", 
          "https://app.dimensions.ai/details/publication/pub.1034387569"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_491.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2009.58"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      81 URIs      60 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2009.58 schema:about N17ca691463044a58a6706dc64651d6b4
    2 N1b296476d03a4f0692c1a08a683fd99d
    3 N51b61cedb6904e87add803169602f079
    4 N5fedead4df54470b8853333f8822fb87
    5 Nb3863bda65c446b487327ef89ada8b30
    6 Nc9fda3dae5354196a334c9e677a91ae7
    7 Nd1427fde532149008a054e07672377f8
    8 Nd2f6a109fe98454a88b19584e33a4006
    9 Nd7b868188a284b7c95b133f232a9bd97
    10 anzsrc-for:09
    11 anzsrc-for:0912
    12 schema:author Nee4c4302cbf246c0acc199c944f3f2e0
    13 schema:citation sg:pub.10.1038/nature04235
    14 sg:pub.10.1038/nature04969
    15 sg:pub.10.1038/nature06016
    16 sg:pub.10.1038/nature07719
    17 sg:pub.10.1038/nmat1849
    18 sg:pub.10.1038/nmat2166
    19 sg:pub.10.1038/nnano.2007.451
    20 sg:pub.10.1038/nnano.2008.210
    21 sg:pub.10.1038/nnano.2008.215
    22 sg:pub.10.1038/nnano.2008.329
    23 sg:pub.10.1038/nnano.2008.365
    24 sg:pub.10.1038/nnano.2008.83
    25 sg:pub.10.1038/nnano.2008.96
    26 schema:datePublished 2009-03-29
    27 schema:datePublishedReg 2009-03-29
    28 schema:description Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N971b797ef2984024b3828a845e7fb04e
    32 Nce0aae7474484804b5a961e736d362b7
    33 sg:journal.1037429
    34 schema:keywords ability
    35 advantages
    36 applications
    37 approach
    38 area
    39 center
    40 chemical functionalization
    41 chemical methods
    42 colloidal suspensions
    43 derivatives
    44 derivatives of graphite
    45 different advantages
    46 disadvantages
    47 functionalization
    48 graphene
    49 graphene center
    50 graphite
    51 high specific surface area
    52 interest
    53 materials
    54 method
    55 new materials
    56 number
    57 number of methods
    58 optical properties
    59 production
    60 production of graphene
    61 properties
    62 specific surface area
    63 surface area
    64 suspension
    65 use
    66 variety
    67 wide variety
    68 schema:name Chemical methods for the production of graphenes
    69 schema:pagination 217-224
    70 schema:productId N1875ce0770d74b928c2f09fe00e8298a
    71 N5b978c0e465c49dda7d228ceaab4288b
    72 Ncbbb107166cc43c085f1bc94c9972eee
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387569
    74 https://doi.org/10.1038/nnano.2009.58
    75 schema:sdDatePublished 2022-10-01T06:35
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N1c1f6c32cd9c4da4afcdddee2ba84642
    78 schema:url https://doi.org/10.1038/nnano.2009.58
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N17ca691463044a58a6706dc64651d6b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Surface Properties
    84 rdf:type schema:DefinedTerm
    85 N1875ce0770d74b928c2f09fe00e8298a schema:name dimensions_id
    86 schema:value pub.1034387569
    87 rdf:type schema:PropertyValue
    88 N1b296476d03a4f0692c1a08a683fd99d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Molecular Conformation
    90 rdf:type schema:DefinedTerm
    91 N1c1f6c32cd9c4da4afcdddee2ba84642 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N51b61cedb6904e87add803169602f079 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Crystallization
    95 rdf:type schema:DefinedTerm
    96 N5b978c0e465c49dda7d228ceaab4288b schema:name pubmed_id
    97 schema:value 19350030
    98 rdf:type schema:PropertyValue
    99 N5fedead4df54470b8853333f8822fb87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Materials Testing
    101 rdf:type schema:DefinedTerm
    102 N971b797ef2984024b3828a845e7fb04e schema:issueNumber 4
    103 rdf:type schema:PublicationIssue
    104 Nb3863bda65c446b487327ef89ada8b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Graphite
    106 rdf:type schema:DefinedTerm
    107 Nc9fda3dae5354196a334c9e677a91ae7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Nanostructures
    109 rdf:type schema:DefinedTerm
    110 Ncbbb107166cc43c085f1bc94c9972eee schema:name doi
    111 schema:value 10.1038/nnano.2009.58
    112 rdf:type schema:PropertyValue
    113 Nce0aae7474484804b5a961e736d362b7 schema:volumeNumber 4
    114 rdf:type schema:PublicationVolume
    115 Nd1427fde532149008a054e07672377f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Macromolecular Substances
    117 rdf:type schema:DefinedTerm
    118 Nd2f6a109fe98454a88b19584e33a4006 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Nanotechnology
    120 rdf:type schema:DefinedTerm
    121 Nd7b868188a284b7c95b133f232a9bd97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Particle Size
    123 rdf:type schema:DefinedTerm
    124 Nec93015bb569421f9827afdfda40fa2f rdf:first sg:person.01143405465.27
    125 rdf:rest rdf:nil
    126 Nee4c4302cbf246c0acc199c944f3f2e0 rdf:first sg:person.013131474507.45
    127 rdf:rest Nec93015bb569421f9827afdfda40fa2f
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Materials Engineering
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1037429 schema:issn 1748-3387
    135 1748-3395
    136 schema:name Nature Nanotechnology
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.01143405465.27 schema:affiliation grid-institutes:grid.89336.37
    140 schema:familyName Ruoff
    141 schema:givenName Rodney S.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143405465.27
    143 rdf:type schema:Person
    144 sg:person.013131474507.45 schema:affiliation grid-institutes:grid.89336.37
    145 schema:familyName Park
    146 schema:givenName Sungjin
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131474507.45
    148 rdf:type schema:Person
    149 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    150 https://doi.org/10.1038/nature04235
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    153 https://doi.org/10.1038/nature04969
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nature06016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073448
    156 https://doi.org/10.1038/nature06016
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
    159 https://doi.org/10.1038/nature07719
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    162 https://doi.org/10.1038/nmat1849
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nmat2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036191349
    165 https://doi.org/10.1038/nmat2166
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    168 https://doi.org/10.1038/nnano.2007.451
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nnano.2008.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001026324
    171 https://doi.org/10.1038/nnano.2008.210
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nnano.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209533
    174 https://doi.org/10.1038/nnano.2008.215
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nnano.2008.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016244742
    177 https://doi.org/10.1038/nnano.2008.329
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nnano.2008.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037486815
    180 https://doi.org/10.1038/nnano.2008.365
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nnano.2008.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    183 https://doi.org/10.1038/nnano.2008.83
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nnano.2008.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035065688
    186 https://doi.org/10.1038/nnano.2008.96
    187 rdf:type schema:CreativeWork
    188 grid-institutes:grid.89336.37 schema:alternateName Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA
    189 schema:name Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...