Chemical methods for the production of graphenes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03-29

AUTHORS

Sungjin Park, Rodney S. Ruoff

ABSTRACT

Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications. More... »

PAGES

217-224

Journal

TITLE

Nature Nanotechnology

ISSUE

4

VOLUME

4

Related Patents

  • System For Detecting Rare Cells
  • Compositions Of Graphene Materials With Metal Nanostructures And Microstructures And Methods Of Making And Using Including Pressure Sensors
  • Method Of Production Of Graphite Oxide And Uses Thereof
  • Graphene Nanodispersion And Method For Preparing Same
  • Crystalline Graphene And Method Of Making Crystalline Graphene
  • Composite
  • Graphene-Based Films In Sensor Applications
  • Production Of Graphene And Graphane
  • Real-Time Detection Of Water Contaminants
  • Graphene Oxide
  • Wearable Graphene Sensors
  • Granules Of Graphene Oxide By Spray Drying
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Production Of Graphene
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Method For Preparing Graphene
  • Method Of Graphene Manufacturing
  • Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid Three-Dimensional Architecture For Energy Storage Devices
  • Methods Of Forming Graphene By Graphite Exfoliation
  • Microfluidic Device And Method For Detecting Rare Cells
  • Method Of Production Of Graphite Oxide And Uses Thereof
  • Process For The Production Of Carbon Graphenes And Other Nanomaterials
  • Graphene Hybrid Materials, Apparatuses, Systems And Methods
  • Apparatus And Associated Methods
  • Production Of Graphene From Metal Alkoxide
  • Graphite Oxide Coated Particulate Material And Method Of Making Thereof
  • Graphene Defect Detection
  • Secondary Battery
  • Alteration Of Graphene Defects
  • Inkjet-Printed Flexible Electronic Components From Graphene Oxide
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Hybrid Nanomaterial Of Graphene Oxide Nanomaterial And Cationic Quaternized Chitosan
  • Method For Fabricating Graphene Sheets Or Graphene Particles Using Supercritical Fluid
  • High-Throughput Graphene Printing And Selective Transfer Using A Localized Laser Heating Technique
  • Functionalized Graphene Oxide System For Detecting Rare Cells
  • Process For The Production Of Carbon Nanoparticles And Sequestration Of Carbon
  • Graphene Structures With Enhanced Stability And Composite Materials Formed Therefrom
  • Battery With Hybrid Electrocatalysts
  • Granules Of Graphene Oxide By Spray Drying
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • Functionalised Graphene
  • Crumpled Particles, Methods Of Synthesizing Same And Applications Using Same
  • Graphene Nanomesh And Method Of Making The Same
  • Alteration Of Graphene Defects
  • System For Detecting Rare Cells
  • Production Of Graphene
  • Method Of Preparing Carbon Thin Film, Electronics Comprising Carbon Thin Film, And Electrochemical Device Comprising Carbon Thin Film
  • System For Detecting Rare Cells
  • Novel Graphene Nanodispersion And Method For Preparing Same
  • Electrochemical Method For The Production Of Graphene Composites And Cell For Conducting The Same
  • Compositions Of Graphene Materials With Metal Nanostructures And Microstructures And Methods Of Making And Using Including Pressure Sensors
  • Methods Of Making Composite Of Graphene Oxide And Nanostructures
  • Functionalized Graphene And Methods Of Manufacturing The Same
  • Nanomaterials And Process For Making The Same
  • Methods Of Forming Graphene
  • Microfluidic Device And Method For Detecting Rare Cells
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Method For Producing Few-Layer Graphene
  • Graphene Dispersion And Graphene-Ionic Liquid Polymer Compound
  • Graphene Defect Alteration
  • Strongly Coupled Inorganic-Graphene Hybrid Materials, Apparatuses, Systems And Methods
  • Method Of Making Nanomaterials From A Renewable Carbon Source
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2009.58

    DOI

    http://dx.doi.org/10.1038/nnano.2009.58

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034387569

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19350030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Graphite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Sungjin", 
            "id": "sg:person.013131474507.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131474507.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruoff", 
            "givenName": "Rodney S.", 
            "id": "sg:person.01143405465.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143405465.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036191349", 
              "https://doi.org/10.1038/nmat2166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073448", 
              "https://doi.org/10.1038/nature06016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016244742", 
              "https://doi.org/10.1038/nnano.2008.329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035065688", 
              "https://doi.org/10.1038/nnano.2008.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037486815", 
              "https://doi.org/10.1038/nnano.2008.365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001026324", 
              "https://doi.org/10.1038/nnano.2008.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032209533", 
              "https://doi.org/10.1038/nnano.2008.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027154969", 
              "https://doi.org/10.1038/nnano.2008.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521124", 
              "https://doi.org/10.1038/nature07719"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-03-29", 
        "datePublishedReg": "2009-03-29", 
        "description": "Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2009.58", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "high specific surface area", 
          "production of graphene", 
          "derivatives of graphite", 
          "specific surface area", 
          "graphene center", 
          "chemical functionalization", 
          "graphene", 
          "chemical methods", 
          "optical properties", 
          "surface area", 
          "colloidal suspensions", 
          "new materials", 
          "graphite", 
          "functionalization", 
          "properties", 
          "different advantages", 
          "derivatives", 
          "number of methods", 
          "wide variety", 
          "applications", 
          "materials", 
          "suspension", 
          "advantages", 
          "method", 
          "production", 
          "disadvantages", 
          "interest", 
          "variety", 
          "ability", 
          "area", 
          "approach", 
          "use", 
          "center", 
          "number"
        ], 
        "name": "Chemical methods for the production of graphenes", 
        "pagination": "217-224", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034387569"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2009.58"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19350030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2009.58", 
          "https://app.dimensions.ai/details/publication/pub.1034387569"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_501.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2009.58"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.58'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      81 URIs      60 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2009.58 schema:about N267d51373db24519b58a1f7df6ef221f
    2 N2cafae5f7b3f4bada023945209e3b507
    3 N689e64fe7b5049ed973994858f16872d
    4 N770dbfc1c2174aa88c9a2c31b7474fa2
    5 N8a26b76c416c4b34a6f73803216586a2
    6 N8c8d52439f3b4f83ae098b2f0fd325d7
    7 N98d88158708a48efaf7b805919e4a16b
    8 Na9ce2d435b9249d4a741b3718a529929
    9 Nfeff044020e64ac4be1cd2df14596d79
    10 anzsrc-for:09
    11 anzsrc-for:0912
    12 schema:author N56b7cee479d746409dc5ad22738ac273
    13 schema:citation sg:pub.10.1038/nature04235
    14 sg:pub.10.1038/nature04969
    15 sg:pub.10.1038/nature06016
    16 sg:pub.10.1038/nature07719
    17 sg:pub.10.1038/nmat1849
    18 sg:pub.10.1038/nmat2166
    19 sg:pub.10.1038/nnano.2007.451
    20 sg:pub.10.1038/nnano.2008.210
    21 sg:pub.10.1038/nnano.2008.215
    22 sg:pub.10.1038/nnano.2008.329
    23 sg:pub.10.1038/nnano.2008.365
    24 sg:pub.10.1038/nnano.2008.83
    25 sg:pub.10.1038/nnano.2008.96
    26 schema:datePublished 2009-03-29
    27 schema:datePublishedReg 2009-03-29
    28 schema:description Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N721bfe1fcf8446c8a08277d88dcf9d20
    32 Ncfab83d6918d491fa3fb18a8801d9366
    33 sg:journal.1037429
    34 schema:keywords ability
    35 advantages
    36 applications
    37 approach
    38 area
    39 center
    40 chemical functionalization
    41 chemical methods
    42 colloidal suspensions
    43 derivatives
    44 derivatives of graphite
    45 different advantages
    46 disadvantages
    47 functionalization
    48 graphene
    49 graphene center
    50 graphite
    51 high specific surface area
    52 interest
    53 materials
    54 method
    55 new materials
    56 number
    57 number of methods
    58 optical properties
    59 production
    60 production of graphene
    61 properties
    62 specific surface area
    63 surface area
    64 suspension
    65 use
    66 variety
    67 wide variety
    68 schema:name Chemical methods for the production of graphenes
    69 schema:pagination 217-224
    70 schema:productId N15a8803d24644831baaca36a71d235ce
    71 N420e208f1ea84077bd27eb17a27d2ea0
    72 Naca5055b691c47e28f41e1c69a9a8c50
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387569
    74 https://doi.org/10.1038/nnano.2009.58
    75 schema:sdDatePublished 2022-09-02T15:54
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N0c8fb435ed43470abe687fe0d95e0b66
    78 schema:url https://doi.org/10.1038/nnano.2009.58
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N0c8fb435ed43470abe687fe0d95e0b66 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N15a8803d24644831baaca36a71d235ce schema:name dimensions_id
    85 schema:value pub.1034387569
    86 rdf:type schema:PropertyValue
    87 N267d51373db24519b58a1f7df6ef221f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Materials Testing
    89 rdf:type schema:DefinedTerm
    90 N2cafae5f7b3f4bada023945209e3b507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Graphite
    92 rdf:type schema:DefinedTerm
    93 N420e208f1ea84077bd27eb17a27d2ea0 schema:name pubmed_id
    94 schema:value 19350030
    95 rdf:type schema:PropertyValue
    96 N56b7cee479d746409dc5ad22738ac273 rdf:first sg:person.013131474507.45
    97 rdf:rest Nd75a0a5725524b698afa8850275d7132
    98 N689e64fe7b5049ed973994858f16872d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Nanostructures
    100 rdf:type schema:DefinedTerm
    101 N721bfe1fcf8446c8a08277d88dcf9d20 schema:volumeNumber 4
    102 rdf:type schema:PublicationVolume
    103 N770dbfc1c2174aa88c9a2c31b7474fa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Molecular Conformation
    105 rdf:type schema:DefinedTerm
    106 N8a26b76c416c4b34a6f73803216586a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Nanotechnology
    108 rdf:type schema:DefinedTerm
    109 N8c8d52439f3b4f83ae098b2f0fd325d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Crystallization
    111 rdf:type schema:DefinedTerm
    112 N98d88158708a48efaf7b805919e4a16b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Particle Size
    114 rdf:type schema:DefinedTerm
    115 Na9ce2d435b9249d4a741b3718a529929 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Macromolecular Substances
    117 rdf:type schema:DefinedTerm
    118 Naca5055b691c47e28f41e1c69a9a8c50 schema:name doi
    119 schema:value 10.1038/nnano.2009.58
    120 rdf:type schema:PropertyValue
    121 Ncfab83d6918d491fa3fb18a8801d9366 schema:issueNumber 4
    122 rdf:type schema:PublicationIssue
    123 Nd75a0a5725524b698afa8850275d7132 rdf:first sg:person.01143405465.27
    124 rdf:rest rdf:nil
    125 Nfeff044020e64ac4be1cd2df14596d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Surface Properties
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Materials Engineering
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1037429 schema:issn 1748-3387
    135 1748-3395
    136 schema:name Nature Nanotechnology
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.01143405465.27 schema:affiliation grid-institutes:grid.89336.37
    140 schema:familyName Ruoff
    141 schema:givenName Rodney S.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143405465.27
    143 rdf:type schema:Person
    144 sg:person.013131474507.45 schema:affiliation grid-institutes:grid.89336.37
    145 schema:familyName Park
    146 schema:givenName Sungjin
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131474507.45
    148 rdf:type schema:Person
    149 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    150 https://doi.org/10.1038/nature04235
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    153 https://doi.org/10.1038/nature04969
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nature06016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073448
    156 https://doi.org/10.1038/nature06016
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
    159 https://doi.org/10.1038/nature07719
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    162 https://doi.org/10.1038/nmat1849
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nmat2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036191349
    165 https://doi.org/10.1038/nmat2166
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    168 https://doi.org/10.1038/nnano.2007.451
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nnano.2008.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001026324
    171 https://doi.org/10.1038/nnano.2008.210
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nnano.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209533
    174 https://doi.org/10.1038/nnano.2008.215
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nnano.2008.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016244742
    177 https://doi.org/10.1038/nnano.2008.329
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nnano.2008.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037486815
    180 https://doi.org/10.1038/nnano.2008.365
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nnano.2008.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    183 https://doi.org/10.1038/nnano.2008.83
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nnano.2008.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035065688
    186 https://doi.org/10.1038/nnano.2008.96
    187 rdf:type schema:CreativeWork
    188 grid-institutes:grid.89336.37 schema:alternateName Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA
    189 schema:name Department of Mechanical Engineering and the Texas Materials Institute, University of Texas at Austin, One University Station C2200, 78712-0292, Austin, Texas, USA
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...