New modes for subsurface atomic force microscopy through nanomechanical coupling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

L. Tetard, A. Passian, T. Thundat

ABSTRACT

Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells. More... »

PAGES

105-109

References to SciGraph publications

  • 2005-11. Growth of the plant cell wall in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2007-06. Nanoscale compositional mapping with gentle forces in NATURE MATERIALS
  • 2008-02. How biotech can transform biofuels in NATURE BIOTECHNOLOGY
  • 2007-08. An atomic force microscope tip designed to measure time-varying nanomechanical forces in NATURE NANOTECHNOLOGY
  • 2008-08. Imaging nanoparticles in cells by nanomechanical holography in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2009.454

    DOI

    http://dx.doi.org/10.1038/nnano.2009.454

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029058950

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20023642


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Populus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stress, Mechanical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wood", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Tennessee at Knoxville", 
              "id": "https://www.grid.ac/institutes/grid.411461.7", 
              "name": [
                "Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA", 
                "Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tetard", 
            "givenName": "L.", 
            "id": "sg:person.01304062133.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304062133.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tennessee at Knoxville", 
              "id": "https://www.grid.ac/institutes/grid.411461.7", 
              "name": [
                "Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA", 
                "Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Passian", 
            "givenName": "A.", 
            "id": "sg:person.01021556547.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021556547.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tennessee at Knoxville", 
              "id": "https://www.grid.ac/institutes/grid.411461.7", 
              "name": [
                "Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA", 
                "Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thundat", 
            "givenName": "T.", 
            "id": "sg:person.01062155247.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062155247.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rspa.1984.0052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002843945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3727/33/19/301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010232510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020662648", 
              "https://doi.org/10.1038/nmat1925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032153122", 
              "https://doi.org/10.1038/nnano.2007.226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.21959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035134781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037649171", 
              "https://doi.org/10.1038/nrm1746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037649171", 
              "https://doi.org/10.1038/nrm1746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037649171", 
              "https://doi.org/10.1038/nrm1746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043456728", 
              "https://doi.org/10.1038/nnano.2008.162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0208-169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045419892", 
              "https://doi.org/10.1038/nbt0208-169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420004694.ch5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051421982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1147409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057675672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1655136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057733162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2909569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057881292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2987460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057890154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.014110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.014110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.076102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.076102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1117694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.32.l1095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063050941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sensor.1991.149020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086352566"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "description": "Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nnano.2009.454", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "New modes for subsurface atomic force microscopy through nanomechanical coupling", 
        "pagination": "105-109", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a6e58fec7ee19945bb96ddec54ecf919191559300fc986d405a9c5c4a9c9da0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20023642"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2009.454"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029058950"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2009.454", 
          "https://app.dimensions.ai/details/publication/pub.1029058950"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nnano.2009.454"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.454'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.454'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.454'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2009.454'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      54 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2009.454 schema:about N139d8db99aa14534a82b9bf4a9256ed9
    2 N1589d85c3f4646a58ddf87f82e2fde51
    3 N27c51391160b4c64b6f7347c3d62fb6b
    4 N2fdd17af50ee4d4ba00d278ea981586f
    5 N8152e3ff87834f9baab7b1c4fc189e62
    6 Na2a9c9367ce24960bf9469cef6f7f3f4
    7 Nd06ef0841f5a4dc5bc84b344d162a5d4
    8 anzsrc-for:03
    9 anzsrc-for:0306
    10 schema:author N79381dc3fd0540e398275efa35c5a558
    11 schema:citation sg:pub.10.1038/nbt0208-169
    12 sg:pub.10.1038/nmat1925
    13 sg:pub.10.1038/nnano.2007.226
    14 sg:pub.10.1038/nnano.2008.162
    15 sg:pub.10.1038/nrm1746
    16 https://doi.org/10.1002/bit.21959
    17 https://doi.org/10.1063/1.1147409
    18 https://doi.org/10.1063/1.1655136
    19 https://doi.org/10.1063/1.2909569
    20 https://doi.org/10.1063/1.2987460
    21 https://doi.org/10.1088/0022-3727/33/19/301
    22 https://doi.org/10.1098/rspa.1984.0052
    23 https://doi.org/10.1103/physrevb.79.014110
    24 https://doi.org/10.1103/physrevlett.100.076102
    25 https://doi.org/10.1109/sensor.1991.149020
    26 https://doi.org/10.1126/science.1117694
    27 https://doi.org/10.1143/jjap.32.l1095
    28 https://doi.org/10.1201/9781420004694.ch5
    29 schema:datePublished 2010-02
    30 schema:datePublishedReg 2010-02-01
    31 schema:description Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N6a6d9497483a439da6a769889d9578d0
    36 Nd803a3781f6b443bb973fa3257cf636f
    37 sg:journal.1037429
    38 schema:name New modes for subsurface atomic force microscopy through nanomechanical coupling
    39 schema:pagination 105-109
    40 schema:productId N84cd5b7b28b24fe2af0ddce98887be56
    41 N950d269ad9ce4e3595455cfd013a8975
    42 N9895ff2d81794b198e1ea8fb5c014a0e
    43 Ncbb800dd6e8646bcb96d593346295ceb
    44 Nfb0e23509e954ef2a69e41cc54d0e9ae
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029058950
    46 https://doi.org/10.1038/nnano.2009.454
    47 schema:sdDatePublished 2019-04-11T09:53
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N51caf9e7958341bbb0cce78406d564ce
    50 schema:url http://www.nature.com/articles/nnano.2009.454
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N139d8db99aa14534a82b9bf4a9256ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    55 schema:name Stress, Mechanical
    56 rdf:type schema:DefinedTerm
    57 N1589d85c3f4646a58ddf87f82e2fde51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    58 schema:name Nanotechnology
    59 rdf:type schema:DefinedTerm
    60 N27c51391160b4c64b6f7347c3d62fb6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Equipment Design
    62 rdf:type schema:DefinedTerm
    63 N2fdd17af50ee4d4ba00d278ea981586f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Nanostructures
    65 rdf:type schema:DefinedTerm
    66 N51caf9e7958341bbb0cce78406d564ce schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N6a6d9497483a439da6a769889d9578d0 schema:volumeNumber 5
    69 rdf:type schema:PublicationVolume
    70 N6be0ed7df2424299b78db5e2b8167a86 rdf:first sg:person.01062155247.45
    71 rdf:rest rdf:nil
    72 N79381dc3fd0540e398275efa35c5a558 rdf:first sg:person.01304062133.26
    73 rdf:rest Nb24f365f58334f7fbd6b23209efe4c11
    74 N8152e3ff87834f9baab7b1c4fc189e62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Microscopy, Atomic Force
    76 rdf:type schema:DefinedTerm
    77 N84cd5b7b28b24fe2af0ddce98887be56 schema:name nlm_unique_id
    78 schema:value 101283273
    79 rdf:type schema:PropertyValue
    80 N950d269ad9ce4e3595455cfd013a8975 schema:name readcube_id
    81 schema:value 8a6e58fec7ee19945bb96ddec54ecf919191559300fc986d405a9c5c4a9c9da0
    82 rdf:type schema:PropertyValue
    83 N9895ff2d81794b198e1ea8fb5c014a0e schema:name pubmed_id
    84 schema:value 20023642
    85 rdf:type schema:PropertyValue
    86 Na2a9c9367ce24960bf9469cef6f7f3f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Populus
    88 rdf:type schema:DefinedTerm
    89 Nb24f365f58334f7fbd6b23209efe4c11 rdf:first sg:person.01021556547.91
    90 rdf:rest N6be0ed7df2424299b78db5e2b8167a86
    91 Ncbb800dd6e8646bcb96d593346295ceb schema:name dimensions_id
    92 schema:value pub.1029058950
    93 rdf:type schema:PropertyValue
    94 Nd06ef0841f5a4dc5bc84b344d162a5d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Wood
    96 rdf:type schema:DefinedTerm
    97 Nd803a3781f6b443bb973fa3257cf636f schema:issueNumber 2
    98 rdf:type schema:PublicationIssue
    99 Nfb0e23509e954ef2a69e41cc54d0e9ae schema:name doi
    100 schema:value 10.1038/nnano.2009.454
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Chemical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Physical Chemistry (incl. Structural)
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1037429 schema:issn 1748-3387
    109 1748-3395
    110 schema:name Nature Nanotechnology
    111 rdf:type schema:Periodical
    112 sg:person.01021556547.91 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
    113 schema:familyName Passian
    114 schema:givenName A.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021556547.91
    116 rdf:type schema:Person
    117 sg:person.01062155247.45 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
    118 schema:familyName Thundat
    119 schema:givenName T.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062155247.45
    121 rdf:type schema:Person
    122 sg:person.01304062133.26 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
    123 schema:familyName Tetard
    124 schema:givenName L.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304062133.26
    126 rdf:type schema:Person
    127 sg:pub.10.1038/nbt0208-169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045419892
    128 https://doi.org/10.1038/nbt0208-169
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/nmat1925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020662648
    131 https://doi.org/10.1038/nmat1925
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nnano.2007.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032153122
    134 https://doi.org/10.1038/nnano.2007.226
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nnano.2008.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043456728
    137 https://doi.org/10.1038/nnano.2008.162
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nrm1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037649171
    140 https://doi.org/10.1038/nrm1746
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1002/bit.21959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035134781
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.1147409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057675672
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.1655136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057733162
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1063/1.2909569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881292
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1063/1.2987460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057890154
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1088/0022-3727/33/19/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010232510
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1098/rspa.1984.0052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002843945
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevb.79.014110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627013
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevlett.100.076102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752953
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/sensor.1991.149020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086352566
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1126/science.1117694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452587
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1143/jjap.32.l1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063050941
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1201/9781420004694.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051421982
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
    169 schema:name Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA
    170 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...