Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04-06

AUTHORS

Goki Eda, Giovanni Fanchini, Manish Chhowalla

ABSTRACT

The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices. More... »

PAGES

270-274

Journal

TITLE

Nature Nanotechnology

ISSUE

5

VOLUME

3

Related Patents

  • Method Of Forming An Electronic Device On A Flexible Substrate
  • System For Detecting Rare Cells
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Graphene Oxide-Metal Nanowire Transparent Conductive Film
  • Method Of Production Of Thin, Transparent And Electrically Conductive Graphene Layer
  • Process For Producing Highly Conducting And Transparent Films From Graphene Oxide-Metal Nanowire Hybrid Materials
  • Graphene Deposition And Graphenated Substrates
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Microfluidic Device And Method For Detecting Rare Cells
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Graphene Oxide Memory Devices And Method Of Fabricating The Same
  • Production Of Graphene From Metal Alkoxide
  • Methods Of Flash Reduction And Patterning Of Graphite Oxide And Its Polymer Composites
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Methods Of Making Non-Covalently Bonded Carbon-Titania Nanocomposite Thin Films And Applications Of The Same
  • Synthesis Of Ultra-Large Graphene Oxide Sheets
  • Highly Conducting And Transparent Film And Process For Producing Same
  • Method To Form A Laser-Scribed Rgo Pattern On A Substrate
  • High-Throughput Solution Processing Of Large Scale Graphene And Device Applications
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • High-Resolution Patterning And Transferring Of Functional Nanomaterials Toward Massive Production Of Flexible, Conformal, And Wearable Sensors Of Many Kinds On Adhesive Tapes
  • Patterned Graphite Oxide Films And Methods To Make And Use Same
  • Hybrid Nanomaterial Of Graphene Oxide Nanomaterial And Cationic Quaternized Chitosan
  • Functionalized Graphene Oxide System For Detecting Rare Cells
  • Component Having A Multipactor-Inhibiting Carbon Nanofilm Thereon, Apparatus Including The Component, And Methods Of Manufacturing And Using The Component
  • Component Having A Multipactor-Inhibiting Carbon Nanofilm Thereon, Apparatus Including The Component, And Methods Of Manufacturing And Using The Component
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • System For Detecting Rare Cells
  • Resin Plating Method Using Graphene Thin Layer
  • Graphene-Encapsulated Nanoparticle-Based Biosensor For The Selective Detection Of Biomarkers
  • Graphene Electrodes For Electronic Devices
  • Graphene Oxide Deoxygenation
  • Nano Pattern Formation
  • Graphene Aerogels
  • Compositions Comprising Enhanced Graphene Oxide Structures And Related Methods
  • Reduced Graphene Oxide Film
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Method For Producing Conducting And Transparent Films From Combined Graphene And Conductive Nano Filaments
  • Flash Joule Heating Synthesis Method And Compositions Thereof
  • Method For Exfoliating Carbonaceous Materials Containing Graphite, Assisted By A Diels-Alder Reaction
  • Method For Preparing Microstructure Arrays On The Surface Of Thin Film Material
  • System For Detecting Rare Cells
  • Graphene Oxide-Metal Nanowire Transparent Conductive Film
  • Multi-Terminal Multi-Junction Photovoltaic Cells
  • A Light-Emitting Electrochemical Device, A System Comprising Such A Device And Use Of Such A Device
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Graphene Polymer Composite
  • Method For Producing Few-Layer Graphene
  • Graphene Deposition And Graphenated Substrates
  • Microfluidic Device And Method For Detecting Rare Cells
  • Graphene Polymer Composite
  • Method Of Forming A Film Of Graphite Oxide Single Layers, And Applications Of Same
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Light-Emitting Electrochemical Device, A System Comprising Such A Device And Use Of Such A Device
  • Field Effect Transistor Manufacturing Method, Field Effect Transistor, And Semiconductor Graphene Oxide Manufacturing Method
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Device Comprising Graphene Oxide Film
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2008.83

    DOI

    http://dx.doi.org/10.1038/nnano.2008.83

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027154969

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654522


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electronics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Failure Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Miniaturization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eda", 
            "givenName": "Goki", 
            "id": "sg:person.01150450507.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150450507.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fanchini", 
            "givenName": "Giovanni", 
            "id": "sg:person.014360557467.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360557467.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chhowalla", 
            "givenName": "Manish", 
            "id": "sg:person.0633062306.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633062306.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043196688", 
              "https://doi.org/10.1038/nmat1967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012506949", 
              "https://doi.org/10.1038/nnano.2007.77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004591182", 
              "https://doi.org/10.1038/nature06037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005874927", 
              "https://doi.org/10.1038/nmat1532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-04-06", 
        "datePublishedReg": "2008-04-06", 
        "description": "The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2008.83", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3063467", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "solution-based method", 
          "reduced graphene oxide thin films", 
          "graphene oxide thin films", 
          "integration of graphene", 
          "reduced graphene oxide", 
          "thin films", 
          "single-walled carbon nanotubes", 
          "opto-electronic properties", 
          "flexible electronic materials", 
          "oxide thin films", 
          "interesting fundamental properties", 
          "graphene oxide", 
          "controllable deposition", 
          "transparent semiconductor", 
          "carbon nanotubes", 
          "single monolayer", 
          "transistor characteristics", 
          "deposition method", 
          "transfer printing", 
          "viable device", 
          "novel materials", 
          "electronic materials", 
          "ultrathin films", 
          "orders of magnitude", 
          "graphene", 
          "thick films", 
          "films", 
          "devices", 
          "fundamental properties", 
          "nanowires", 
          "nanotubes", 
          "large areas", 
          "semiconductors", 
          "materials", 
          "oxide", 
          "monolayers", 
          "properties", 
          "integration", 
          "printing", 
          "deposition", 
          "layer", 
          "route", 
          "thickness", 
          "method", 
          "magnitude", 
          "characteristics", 
          "order", 
          "similar efforts", 
          "area", 
          "development", 
          "efforts"
        ], 
        "name": "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", 
        "pagination": "270-274", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027154969"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2008.83"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654522"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2008.83", 
          "https://app.dimensions.ai/details/publication/pub.1027154969"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_471.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2008.83"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      102 URIs      83 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2008.83 schema:about N007e064031014ea48f58563fbb40de75
    2 N042c06854d7f467e8c8fd5d84a44f604
    3 N0a9cdde3a0dc488f857083dbd17008bf
    4 N1811dd6e150e4682b854bec3fe18be51
    5 N515dcac53d4e473b95c7aba6f1ac2edf
    6 N66a7f5100d8b4fe8b9600cb9eee3d389
    7 N77a520edc8874c65ad22c5746dec9d23
    8 N7dd35db8abb5400bbd0e69bb8194a754
    9 N7e99d787caba43e781da7a6292205ecb
    10 Na2a81fca0c5046f4a985e17982b158ef
    11 Nabcff95b8627487c95d6e1cd0aa0bd3a
    12 Nabe7107dc2844a87964da530a36e0d25
    13 Nbe41b62f1e3a47f5a605b637e2d48912
    14 Nd74440d7bd9c4c1dad3b3c209773f2f7
    15 Nfbbaff8b5d9e46688014b2f915e79146
    16 anzsrc-for:03
    17 anzsrc-for:0306
    18 anzsrc-for:09
    19 anzsrc-for:0912
    20 anzsrc-for:10
    21 anzsrc-for:1007
    22 schema:author N8727bf07579946468d8c82c4679bb831
    23 schema:citation sg:pub.10.1038/nature04969
    24 sg:pub.10.1038/nature06037
    25 sg:pub.10.1038/nmat1532
    26 sg:pub.10.1038/nmat1849
    27 sg:pub.10.1038/nmat1967
    28 sg:pub.10.1038/nnano.2007.451
    29 sg:pub.10.1038/nnano.2007.77
    30 schema:datePublished 2008-04-06
    31 schema:datePublishedReg 2008-04-06
    32 schema:description The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N4e17ebe8b6984fe98d0ab6ff12d2d228
    36 Nda541bcdf2eb430caf8f91e2b116f975
    37 sg:journal.1037429
    38 schema:keywords area
    39 carbon nanotubes
    40 characteristics
    41 controllable deposition
    42 deposition
    43 deposition method
    44 development
    45 devices
    46 efforts
    47 electronic materials
    48 films
    49 flexible electronic materials
    50 fundamental properties
    51 graphene
    52 graphene oxide
    53 graphene oxide thin films
    54 integration
    55 integration of graphene
    56 interesting fundamental properties
    57 large areas
    58 layer
    59 magnitude
    60 materials
    61 method
    62 monolayers
    63 nanotubes
    64 nanowires
    65 novel materials
    66 opto-electronic properties
    67 order
    68 orders of magnitude
    69 oxide
    70 oxide thin films
    71 printing
    72 properties
    73 reduced graphene oxide
    74 reduced graphene oxide thin films
    75 route
    76 semiconductors
    77 similar efforts
    78 single monolayer
    79 single-walled carbon nanotubes
    80 solution-based method
    81 thick films
    82 thickness
    83 thin films
    84 transfer printing
    85 transistor characteristics
    86 transparent semiconductor
    87 ultrathin films
    88 viable device
    89 schema:name Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    90 schema:pagination 270-274
    91 schema:productId N3767d7f0147e488f9e41bfece7954ff4
    92 N5e583344f57d4a1a9e012bfdae40759a
    93 Nd633cbd02ae34c7fb9280b4d95c27334
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    95 https://doi.org/10.1038/nnano.2008.83
    96 schema:sdDatePublished 2022-10-01T06:34
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N6e6741ec32014070a0dd3d67ea9d6d8e
    99 schema:url https://doi.org/10.1038/nnano.2008.83
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N007e064031014ea48f58563fbb40de75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Carbon
    105 rdf:type schema:DefinedTerm
    106 N042c06854d7f467e8c8fd5d84a44f604 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Particle Size
    108 rdf:type schema:DefinedTerm
    109 N0a9cdde3a0dc488f857083dbd17008bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Macromolecular Substances
    111 rdf:type schema:DefinedTerm
    112 N1811dd6e150e4682b854bec3fe18be51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Materials Testing
    114 rdf:type schema:DefinedTerm
    115 N2a509fd18e6445f5ae1cae3f4daf47ab rdf:first sg:person.0633062306.03
    116 rdf:rest rdf:nil
    117 N3767d7f0147e488f9e41bfece7954ff4 schema:name pubmed_id
    118 schema:value 18654522
    119 rdf:type schema:PropertyValue
    120 N4e17ebe8b6984fe98d0ab6ff12d2d228 schema:issueNumber 5
    121 rdf:type schema:PublicationIssue
    122 N515dcac53d4e473b95c7aba6f1ac2edf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Nanotechnology
    124 rdf:type schema:DefinedTerm
    125 N5c5ebd032535463a80af8cbfabd7d194 rdf:first sg:person.014360557467.89
    126 rdf:rest N2a509fd18e6445f5ae1cae3f4daf47ab
    127 N5e583344f57d4a1a9e012bfdae40759a schema:name dimensions_id
    128 schema:value pub.1027154969
    129 rdf:type schema:PropertyValue
    130 N66a7f5100d8b4fe8b9600cb9eee3d389 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Electronics
    132 rdf:type schema:DefinedTerm
    133 N6e6741ec32014070a0dd3d67ea9d6d8e schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N77a520edc8874c65ad22c5746dec9d23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Crystallization
    137 rdf:type schema:DefinedTerm
    138 N7dd35db8abb5400bbd0e69bb8194a754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Equipment Design
    140 rdf:type schema:DefinedTerm
    141 N7e99d787caba43e781da7a6292205ecb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Miniaturization
    143 rdf:type schema:DefinedTerm
    144 N8727bf07579946468d8c82c4679bb831 rdf:first sg:person.01150450507.27
    145 rdf:rest N5c5ebd032535463a80af8cbfabd7d194
    146 Na2a81fca0c5046f4a985e17982b158ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Surface Properties
    148 rdf:type schema:DefinedTerm
    149 Nabcff95b8627487c95d6e1cd0aa0bd3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Semiconductors
    151 rdf:type schema:DefinedTerm
    152 Nabe7107dc2844a87964da530a36e0d25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Molecular Conformation
    154 rdf:type schema:DefinedTerm
    155 Nbe41b62f1e3a47f5a605b637e2d48912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Equipment Failure Analysis
    157 rdf:type schema:DefinedTerm
    158 Nd633cbd02ae34c7fb9280b4d95c27334 schema:name doi
    159 schema:value 10.1038/nnano.2008.83
    160 rdf:type schema:PropertyValue
    161 Nd74440d7bd9c4c1dad3b3c209773f2f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Oxides
    163 rdf:type schema:DefinedTerm
    164 Nda541bcdf2eb430caf8f91e2b116f975 schema:volumeNumber 3
    165 rdf:type schema:PublicationVolume
    166 Nfbbaff8b5d9e46688014b2f915e79146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Nanostructures
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Chemical Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Physical Chemistry (incl. Structural)
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Engineering
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Materials Engineering
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Technology
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Nanotechnology
    186 rdf:type schema:DefinedTerm
    187 sg:grant.3063467 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2008.83
    188 rdf:type schema:MonetaryGrant
    189 sg:journal.1037429 schema:issn 1748-3387
    190 1748-3395
    191 schema:name Nature Nanotechnology
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01150450507.27 schema:affiliation grid-institutes:grid.430387.b
    195 schema:familyName Eda
    196 schema:givenName Goki
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150450507.27
    198 rdf:type schema:Person
    199 sg:person.014360557467.89 schema:affiliation grid-institutes:grid.430387.b
    200 schema:familyName Fanchini
    201 schema:givenName Giovanni
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360557467.89
    203 rdf:type schema:Person
    204 sg:person.0633062306.03 schema:affiliation grid-institutes:grid.430387.b
    205 schema:familyName Chhowalla
    206 schema:givenName Manish
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633062306.03
    208 rdf:type schema:Person
    209 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    210 https://doi.org/10.1038/nature04969
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature06037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591182
    213 https://doi.org/10.1038/nature06037
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmat1532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005874927
    216 https://doi.org/10.1038/nmat1532
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    219 https://doi.org/10.1038/nmat1849
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
    222 https://doi.org/10.1038/nmat1967
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    225 https://doi.org/10.1038/nnano.2007.451
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nnano.2007.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012506949
    228 https://doi.org/10.1038/nnano.2007.77
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.430387.b schema:alternateName Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA
    231 schema:name Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...