Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04-06

AUTHORS

Goki Eda, Giovanni Fanchini, Manish Chhowalla

ABSTRACT

The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices. More... »

PAGES

270-274

Journal

TITLE

Nature Nanotechnology

ISSUE

5

VOLUME

3

Related Patents

  • Method Of Forming An Electronic Device On A Flexible Substrate
  • System For Detecting Rare Cells
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Graphene Oxide-Metal Nanowire Transparent Conductive Film
  • Method Of Production Of Thin, Transparent And Electrically Conductive Graphene Layer
  • Process For Producing Highly Conducting And Transparent Films From Graphene Oxide-Metal Nanowire Hybrid Materials
  • Graphene Deposition And Graphenated Substrates
  • Methods Of Making Non-Covalently Bonded Carbon-Titania Nanocomposite Thin Films And Applications Of The Same
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Microfluidic Device And Method For Detecting Rare Cells
  • Graphene Oxide Memory Devices And Method Of Fabricating The Same
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Synthesis Of Ultra-Large Graphene Oxide Sheets
  • Highly Conducting And Transparent Film And Process For Producing Same
  • Method To Form A Laser-Scribed Rgo Pattern On A Substrate
  • High-Throughput Solution Processing Of Large Scale Graphene And Device Applications
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Production Of Graphene From Metal Alkoxide
  • Methods Of Flash Reduction And Patterning Of Graphite Oxide And Its Polymer Composites
  • High-Resolution Patterning And Transferring Of Functional Nanomaterials Toward Massive Production Of Flexible, Conformal, And Wearable Sensors Of Many Kinds On Adhesive Tapes
  • Patterned Graphite Oxide Films And Methods To Make And Use Same
  • Hybrid Nanomaterial Of Graphene Oxide Nanomaterial And Cationic Quaternized Chitosan
  • Functionalized Graphene Oxide System For Detecting Rare Cells
  • Component Having A Multipactor-Inhibiting Carbon Nanofilm Thereon, Apparatus Including The Component, And Methods Of Manufacturing And Using The Component
  • Component Having A Multipactor-Inhibiting Carbon Nanofilm Thereon, Apparatus Including The Component, And Methods Of Manufacturing And Using The Component
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • System For Detecting Rare Cells
  • Resin Plating Method Using Graphene Thin Layer
  • Graphene-Encapsulated Nanoparticle-Based Biosensor For The Selective Detection Of Biomarkers
  • Graphene Electrodes For Electronic Devices
  • Graphene Oxide Deoxygenation
  • Nano Pattern Formation
  • Graphene Aerogels
  • Compositions Comprising Enhanced Graphene Oxide Structures And Related Methods
  • Reduced Graphene Oxide Film
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Method For Producing Conducting And Transparent Films From Combined Graphene And Conductive Nano Filaments
  • Flash Joule Heating Synthesis Method And Compositions Thereof
  • Method For Exfoliating Carbonaceous Materials Containing Graphite, Assisted By A Diels-Alder Reaction
  • Method For Preparing Microstructure Arrays On The Surface Of Thin Film Material
  • System For Detecting Rare Cells
  • Graphene Oxide-Metal Nanowire Transparent Conductive Film
  • Multi-Terminal Multi-Junction Photovoltaic Cells
  • A Light-Emitting Electrochemical Device, A System Comprising Such A Device And Use Of Such A Device
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Graphene Polymer Composite
  • Method For Producing Few-Layer Graphene
  • Graphene Deposition And Graphenated Substrates
  • Microfluidic Device And Method For Detecting Rare Cells
  • Graphene Polymer Composite
  • Method Of Forming A Film Of Graphite Oxide Single Layers, And Applications Of Same
  • Graphene Protective Film Serving As A Gas And Moisture Barrier, Method For Forming Same, And Use Thereof
  • Light-Emitting Electrochemical Device, A System Comprising Such A Device And Use Of Such A Device
  • Field Effect Transistor Manufacturing Method, Field Effect Transistor, And Semiconductor Graphene Oxide Manufacturing Method
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Device Comprising Graphene Oxide Film
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2008.83

    DOI

    http://dx.doi.org/10.1038/nnano.2008.83

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027154969

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654522


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electronics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Failure Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Miniaturization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eda", 
            "givenName": "Goki", 
            "id": "sg:person.01150450507.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150450507.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fanchini", 
            "givenName": "Giovanni", 
            "id": "sg:person.014360557467.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360557467.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chhowalla", 
            "givenName": "Manish", 
            "id": "sg:person.0633062306.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633062306.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043196688", 
              "https://doi.org/10.1038/nmat1967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012506949", 
              "https://doi.org/10.1038/nnano.2007.77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004591182", 
              "https://doi.org/10.1038/nature06037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005874927", 
              "https://doi.org/10.1038/nmat1532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-04-06", 
        "datePublishedReg": "2008-04-06", 
        "description": "The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nnano.2008.83", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3063467", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "solution-based method", 
          "reduced graphene oxide thin films", 
          "graphene oxide thin films", 
          "integration of graphene", 
          "reduced graphene oxide", 
          "thin films", 
          "single-walled carbon nanotubes", 
          "opto-electronic properties", 
          "flexible electronic materials", 
          "oxide thin films", 
          "interesting fundamental properties", 
          "graphene oxide", 
          "controllable deposition", 
          "transparent semiconductor", 
          "carbon nanotubes", 
          "single monolayer", 
          "transistor characteristics", 
          "deposition method", 
          "transfer printing", 
          "viable device", 
          "novel materials", 
          "electronic materials", 
          "ultrathin films", 
          "orders of magnitude", 
          "graphene", 
          "thick films", 
          "films", 
          "devices", 
          "fundamental properties", 
          "nanowires", 
          "nanotubes", 
          "large areas", 
          "semiconductors", 
          "materials", 
          "oxide", 
          "monolayers", 
          "properties", 
          "integration", 
          "printing", 
          "deposition", 
          "layer", 
          "route", 
          "thickness", 
          "method", 
          "magnitude", 
          "characteristics", 
          "order", 
          "similar efforts", 
          "area", 
          "development", 
          "efforts"
        ], 
        "name": "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", 
        "pagination": "270-274", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027154969"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2008.83"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654522"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2008.83", 
          "https://app.dimensions.ai/details/publication/pub.1027154969"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_471.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nnano.2008.83"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.83'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      102 URIs      83 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2008.83 schema:about N1b37e7cf431540b39ed464cf2561a30a
    2 N23a12a10373b44cd9dff3864172e95d4
    3 N28bb3acd540e4b999a573917f2378716
    4 N4f7011b36cf944b499af30d623fb5880
    5 N7a27a96f4cf04adeb341c47a64e1f378
    6 N822ae9b014044549ac9694e6d389cf92
    7 N8882a18eda3248aabbe34b599e1ed4b0
    8 N8e1e5036b0914ee696b891d72a4c6185
    9 N9195613af8a04617ab50a0ed714b9cad
    10 N95a922105bd7498f95b24081d5effeb6
    11 Nab26e178027c4d068b4d32bad91a4e67
    12 Ncbdbb666daae46c6b0996580b5f282db
    13 Nec22258dd9e04181a0ec42657687e62a
    14 Nf5b6a0e8b9f44092876845d7ee15494a
    15 Nf72e066e9273408a9dabfc13fdf44d1f
    16 anzsrc-for:03
    17 anzsrc-for:0306
    18 anzsrc-for:09
    19 anzsrc-for:0912
    20 anzsrc-for:10
    21 anzsrc-for:1007
    22 schema:author Nd0849ba210fd43d789d1a905aec23964
    23 schema:citation sg:pub.10.1038/nature04969
    24 sg:pub.10.1038/nature06037
    25 sg:pub.10.1038/nmat1532
    26 sg:pub.10.1038/nmat1849
    27 sg:pub.10.1038/nmat1967
    28 sg:pub.10.1038/nnano.2007.451
    29 sg:pub.10.1038/nnano.2007.77
    30 schema:datePublished 2008-04-06
    31 schema:datePublishedReg 2008-04-06
    32 schema:description The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N5936f0b558a74bb7a85f3ffdd2a5f5a1
    36 Nb5960765835c43948ce7b1eafa27c6fa
    37 sg:journal.1037429
    38 schema:keywords area
    39 carbon nanotubes
    40 characteristics
    41 controllable deposition
    42 deposition
    43 deposition method
    44 development
    45 devices
    46 efforts
    47 electronic materials
    48 films
    49 flexible electronic materials
    50 fundamental properties
    51 graphene
    52 graphene oxide
    53 graphene oxide thin films
    54 integration
    55 integration of graphene
    56 interesting fundamental properties
    57 large areas
    58 layer
    59 magnitude
    60 materials
    61 method
    62 monolayers
    63 nanotubes
    64 nanowires
    65 novel materials
    66 opto-electronic properties
    67 order
    68 orders of magnitude
    69 oxide
    70 oxide thin films
    71 printing
    72 properties
    73 reduced graphene oxide
    74 reduced graphene oxide thin films
    75 route
    76 semiconductors
    77 similar efforts
    78 single monolayer
    79 single-walled carbon nanotubes
    80 solution-based method
    81 thick films
    82 thickness
    83 thin films
    84 transfer printing
    85 transistor characteristics
    86 transparent semiconductor
    87 ultrathin films
    88 viable device
    89 schema:name Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    90 schema:pagination 270-274
    91 schema:productId N13146d95f24741e6ab92b791219500fa
    92 N60ee654e6cef4e018189df1b25ee2aa0
    93 Ndb95e9c2c7c141c5a0fb90fa005d5f9f
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    95 https://doi.org/10.1038/nnano.2008.83
    96 schema:sdDatePublished 2022-10-01T06:34
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N9cb546876d1041ef89d6235652312c8f
    99 schema:url https://doi.org/10.1038/nnano.2008.83
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N13146d95f24741e6ab92b791219500fa schema:name dimensions_id
    104 schema:value pub.1027154969
    105 rdf:type schema:PropertyValue
    106 N1b37e7cf431540b39ed464cf2561a30a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Particle Size
    108 rdf:type schema:DefinedTerm
    109 N1e08ac682c214679af10f4ee54c505b9 rdf:first sg:person.0633062306.03
    110 rdf:rest rdf:nil
    111 N23a12a10373b44cd9dff3864172e95d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Materials Testing
    113 rdf:type schema:DefinedTerm
    114 N28bb3acd540e4b999a573917f2378716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Oxides
    116 rdf:type schema:DefinedTerm
    117 N4f7011b36cf944b499af30d623fb5880 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Miniaturization
    119 rdf:type schema:DefinedTerm
    120 N5936f0b558a74bb7a85f3ffdd2a5f5a1 schema:issueNumber 5
    121 rdf:type schema:PublicationIssue
    122 N60ee654e6cef4e018189df1b25ee2aa0 schema:name pubmed_id
    123 schema:value 18654522
    124 rdf:type schema:PropertyValue
    125 N7a27a96f4cf04adeb341c47a64e1f378 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Equipment Design
    127 rdf:type schema:DefinedTerm
    128 N822ae9b014044549ac9694e6d389cf92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Surface Properties
    130 rdf:type schema:DefinedTerm
    131 N8882a18eda3248aabbe34b599e1ed4b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Crystallization
    133 rdf:type schema:DefinedTerm
    134 N8e1e5036b0914ee696b891d72a4c6185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Semiconductors
    136 rdf:type schema:DefinedTerm
    137 N9195613af8a04617ab50a0ed714b9cad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Electronics
    139 rdf:type schema:DefinedTerm
    140 N95a922105bd7498f95b24081d5effeb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Equipment Failure Analysis
    142 rdf:type schema:DefinedTerm
    143 N9cb546876d1041ef89d6235652312c8f schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 Nab26e178027c4d068b4d32bad91a4e67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Molecular Conformation
    147 rdf:type schema:DefinedTerm
    148 Nb5960765835c43948ce7b1eafa27c6fa schema:volumeNumber 3
    149 rdf:type schema:PublicationVolume
    150 Ncbdbb666daae46c6b0996580b5f282db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Nanostructures
    152 rdf:type schema:DefinedTerm
    153 Nd0849ba210fd43d789d1a905aec23964 rdf:first sg:person.01150450507.27
    154 rdf:rest Nf364d18b938e4032825c33cdcd28a5cb
    155 Ndb95e9c2c7c141c5a0fb90fa005d5f9f schema:name doi
    156 schema:value 10.1038/nnano.2008.83
    157 rdf:type schema:PropertyValue
    158 Nec22258dd9e04181a0ec42657687e62a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Carbon
    160 rdf:type schema:DefinedTerm
    161 Nf364d18b938e4032825c33cdcd28a5cb rdf:first sg:person.014360557467.89
    162 rdf:rest N1e08ac682c214679af10f4ee54c505b9
    163 Nf5b6a0e8b9f44092876845d7ee15494a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Nanotechnology
    165 rdf:type schema:DefinedTerm
    166 Nf72e066e9273408a9dabfc13fdf44d1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Macromolecular Substances
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Chemical Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Physical Chemistry (incl. Structural)
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Engineering
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Materials Engineering
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Technology
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Nanotechnology
    186 rdf:type schema:DefinedTerm
    187 sg:grant.3063467 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2008.83
    188 rdf:type schema:MonetaryGrant
    189 sg:journal.1037429 schema:issn 1748-3387
    190 1748-3395
    191 schema:name Nature Nanotechnology
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01150450507.27 schema:affiliation grid-institutes:grid.430387.b
    195 schema:familyName Eda
    196 schema:givenName Goki
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150450507.27
    198 rdf:type schema:Person
    199 sg:person.014360557467.89 schema:affiliation grid-institutes:grid.430387.b
    200 schema:familyName Fanchini
    201 schema:givenName Giovanni
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360557467.89
    203 rdf:type schema:Person
    204 sg:person.0633062306.03 schema:affiliation grid-institutes:grid.430387.b
    205 schema:familyName Chhowalla
    206 schema:givenName Manish
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633062306.03
    208 rdf:type schema:Person
    209 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    210 https://doi.org/10.1038/nature04969
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature06037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591182
    213 https://doi.org/10.1038/nature06037
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmat1532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005874927
    216 https://doi.org/10.1038/nmat1532
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    219 https://doi.org/10.1038/nmat1849
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
    222 https://doi.org/10.1038/nmat1967
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    225 https://doi.org/10.1038/nnano.2007.451
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nnano.2007.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012506949
    228 https://doi.org/10.1038/nnano.2007.77
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.430387.b schema:alternateName Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA
    231 schema:name Materials Science and Engineering, Rutgers University, 607 Taylor Road, 08854, Piscataway, New Jersey, USA
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...