Intrinsic and extrinsic performance limits of graphene devices on SiO2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-04

AUTHORS

Jian-Hao Chen, Chaun Jang, Shudong Xiao, Masa Ishigami, Michael S. Fuhrer

ABSTRACT

The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices. More... »

PAGES

206

References to SciGraph publications

  • 2007-09. Temperature dependent electron transport in graphene in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2008-05. Charged-impurity scattering in graphene in NATURE PHYSICS
  • 2007-09. Detection of individual gas molecules adsorbed on graphene in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2008.58

    DOI

    http://dx.doi.org/10.1038/nnano.2008.58

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037553678

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654504


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acoustics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Light", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Chemical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742, USA", 
                "Department of Physics, University of Maryland, College Park, Maryland 20742, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jian-Hao", 
            "id": "sg:person.01204424303.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204424303.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Department of Physics, University of Maryland, College Park, Maryland 20742, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jang", 
            "givenName": "Chaun", 
            "id": "sg:person.01252537503.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252537503.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Department of Physics, University of Maryland, College Park, Maryland 20742, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Shudong", 
            "id": "sg:person.01320652703.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320652703.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Department of Physics, University of Maryland, College Park, Maryland 20742, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishigami", 
            "givenName": "Masa", 
            "id": "sg:person.0732374135.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732374135.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742, USA", 
                "Department of Physics, University of Maryland, College Park, Maryland 20742, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuhrer", 
            "givenName": "Michael S.", 
            "id": "sg:person.01200656557.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200656557.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2007-00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004428609", 
              "https://doi.org/10.1140/epjst/e2007-00221-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.035439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005063860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.035439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005063860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.205423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009346404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.205423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009346404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010300167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010300167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070613a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011175219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070613a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011175219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl034841q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012159801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl034841q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012159801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.086802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019757442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.086802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019757442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.195415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020498077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.195415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020498077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sse.2005.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022068559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sse.2005.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022068559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024874242", 
              "https://doi.org/10.1038/nphys935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200701059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028541030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(79)90051-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034818582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(79)90051-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034818582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502848102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036398807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1125925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040736915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0704772104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041096485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043196688", 
              "https://doi.org/10.1038/nmat1967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049722559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049722559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049722559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1405826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057703413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.100.1672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060416728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.100.1672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060416728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.22.904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060528294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.22.904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060528294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.10651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060594945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.10651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060594945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.235412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.235412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.045426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.045426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.016602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.016602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.21.861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063095955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.47.1210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063104439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.67.2421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063117301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.67.2421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063117301"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-04", 
        "datePublishedReg": "2008-04-01", 
        "description": "The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nnano.2008.58", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3058211", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3072034", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Intrinsic and extrinsic performance limits of graphene devices on SiO2", 
        "pagination": "206", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b2e4443c57f604f32456e68ac38e39447a6aad3c6f82531cb99a50c0d64767d3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654504"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2008.58"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037553678"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2008.58", 
          "https://app.dimensions.ai/details/publication/pub.1037553678"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000591.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nnano.2008.58"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.58'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.58'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.58'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.58'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      21 PREDICATES      71 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2008.58 schema:about N0d647d181b674ec29cb1971e320103c8
    2 N18d764e08f0e4dd78465a57960192217
    3 N457bafde02e94973b0e9188d70721467
    4 N6b8313377ffd41e0bcf192de782e4f30
    5 N7130a0a2a97c42a6b467434d78073268
    6 N876fb17cec8f40c68c70e5b73fa1926c
    7 Na50fa5c55c0643c4894a0d5d26e6771a
    8 Na6000d420a31411d82934657d06dd89b
    9 Na9e12b6c9c754a45900bce78274959de
    10 Nbdf24d59804546bfbad3796593e7f370
    11 Nc46d7d4cde6247f3aa3a82e0ffa71ad5
    12 Nca87ee904eb347afb1206aa256beb7db
    13 Neccab1add985448189b514309601dacd
    14 anzsrc-for:10
    15 anzsrc-for:1007
    16 schema:author N494f7b92b7db49ffa0dce98f5c70f626
    17 schema:citation sg:pub.10.1038/nmat1967
    18 sg:pub.10.1038/nphys935
    19 sg:pub.10.1140/epjst/e2007-00221-9
    20 https://doi.org/10.1002/adma.200701059
    21 https://doi.org/10.1016/0038-1098(79)90051-6
    22 https://doi.org/10.1016/j.sse.2005.09.008
    23 https://doi.org/10.1021/nl034841q
    24 https://doi.org/10.1021/nl070613a
    25 https://doi.org/10.1063/1.1405826
    26 https://doi.org/10.1073/pnas.0502848102
    27 https://doi.org/10.1073/pnas.0704772104
    28 https://doi.org/10.1103/physrev.100.1672
    29 https://doi.org/10.1103/physrevb.22.904
    30 https://doi.org/10.1103/physrevb.61.10651
    31 https://doi.org/10.1103/physrevb.65.235412
    32 https://doi.org/10.1103/physrevb.68.045426
    33 https://doi.org/10.1103/physrevb.76.035439
    34 https://doi.org/10.1103/physrevb.76.205423
    35 https://doi.org/10.1103/physrevb.77.195415
    36 https://doi.org/10.1103/physrevlett.100.016602
    37 https://doi.org/10.1103/physrevlett.84.2941
    38 https://doi.org/10.1103/physrevlett.94.086802
    39 https://doi.org/10.1103/physrevlett.95.146805
    40 https://doi.org/10.1103/physrevlett.97.187401
    41 https://doi.org/10.1126/science.1102896
    42 https://doi.org/10.1126/science.1125925
    43 https://doi.org/10.1143/jpsj.21.861
    44 https://doi.org/10.1143/jpsj.47.1210
    45 https://doi.org/10.1143/jpsj.67.2421
    46 schema:datePublished 2008-04
    47 schema:datePublishedReg 2008-04-01
    48 schema:description The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf N82601fc7b46142ab837d9549c0b6cda4
    53 Nf8989b0b7aa743b3bc842b0db3186545
    54 sg:journal.1037429
    55 schema:name Intrinsic and extrinsic performance limits of graphene devices on SiO2
    56 schema:pagination 206
    57 schema:productId N074eb2f46f1c48d4a4ca344d8ef4346c
    58 N26b9ee15aa084c4a80e7a15b8de40ce3
    59 N894fbb644cb949bd84f5263077d14f7a
    60 Nb45cbd36a9174f10a8a76fcf5de693e3
    61 Nc473e15b2cc345678ec946184f7c867c
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037553678
    63 https://doi.org/10.1038/nnano.2008.58
    64 schema:sdDatePublished 2019-04-11T02:28
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Naa55ef9b748048bd80273ead6a2a9fe7
    67 schema:url https://www.nature.com/articles/nnano.2008.58
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N074eb2f46f1c48d4a4ca344d8ef4346c schema:name doi
    72 schema:value 10.1038/nnano.2008.58
    73 rdf:type schema:PropertyValue
    74 N0d647d181b674ec29cb1971e320103c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Nanotechnology
    76 rdf:type schema:DefinedTerm
    77 N18d764e08f0e4dd78465a57960192217 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Materials Testing
    79 rdf:type schema:DefinedTerm
    80 N26b9ee15aa084c4a80e7a15b8de40ce3 schema:name pubmed_id
    81 schema:value 18654504
    82 rdf:type schema:PropertyValue
    83 N36a7f397f1b84555911e2edf6527dc54 rdf:first sg:person.01252537503.55
    84 rdf:rest N451d47229b2a47ff8e53cb3f6a8db375
    85 N451d47229b2a47ff8e53cb3f6a8db375 rdf:first sg:person.01320652703.27
    86 rdf:rest Nb246183124764b988f2a67bfe9104b9b
    87 N457bafde02e94973b0e9188d70721467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Computer Simulation
    89 rdf:type schema:DefinedTerm
    90 N494f7b92b7db49ffa0dce98f5c70f626 rdf:first sg:person.01204424303.15
    91 rdf:rest N36a7f397f1b84555911e2edf6527dc54
    92 N6b8313377ffd41e0bcf192de782e4f30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Macromolecular Substances
    94 rdf:type schema:DefinedTerm
    95 N7130a0a2a97c42a6b467434d78073268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Nanostructures
    97 rdf:type schema:DefinedTerm
    98 N82601fc7b46142ab837d9549c0b6cda4 schema:volumeNumber 3
    99 rdf:type schema:PublicationVolume
    100 N876fb17cec8f40c68c70e5b73fa1926c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Models, Chemical
    102 rdf:type schema:DefinedTerm
    103 N894fbb644cb949bd84f5263077d14f7a schema:name dimensions_id
    104 schema:value pub.1037553678
    105 rdf:type schema:PropertyValue
    106 Na50fa5c55c0643c4894a0d5d26e6771a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Light
    108 rdf:type schema:DefinedTerm
    109 Na6000d420a31411d82934657d06dd89b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Acoustics
    111 rdf:type schema:DefinedTerm
    112 Na9e12b6c9c754a45900bce78274959de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Molecular Conformation
    114 rdf:type schema:DefinedTerm
    115 Naa55ef9b748048bd80273ead6a2a9fe7 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nb246183124764b988f2a67bfe9104b9b rdf:first sg:person.0732374135.99
    118 rdf:rest Nf58a8b64b80f460aa3641ca7d7107db8
    119 Nb45cbd36a9174f10a8a76fcf5de693e3 schema:name readcube_id
    120 schema:value b2e4443c57f604f32456e68ac38e39447a6aad3c6f82531cb99a50c0d64767d3
    121 rdf:type schema:PropertyValue
    122 Nbdf24d59804546bfbad3796593e7f370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Carbon
    124 rdf:type schema:DefinedTerm
    125 Nc46d7d4cde6247f3aa3a82e0ffa71ad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Particle Size
    127 rdf:type schema:DefinedTerm
    128 Nc473e15b2cc345678ec946184f7c867c schema:name nlm_unique_id
    129 schema:value 101283273
    130 rdf:type schema:PropertyValue
    131 Nca87ee904eb347afb1206aa256beb7db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Silicon
    133 rdf:type schema:DefinedTerm
    134 Neccab1add985448189b514309601dacd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Surface Properties
    136 rdf:type schema:DefinedTerm
    137 Nf58a8b64b80f460aa3641ca7d7107db8 rdf:first sg:person.01200656557.13
    138 rdf:rest rdf:nil
    139 Nf8989b0b7aa743b3bc842b0db3186545 schema:issueNumber 4
    140 rdf:type schema:PublicationIssue
    141 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Technology
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Nanotechnology
    146 rdf:type schema:DefinedTerm
    147 sg:grant.3058211 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2008.58
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.3072034 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2008.58
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1037429 schema:issn 1748-3387
    152 1748-3395
    153 schema:name Nature Nanotechnology
    154 rdf:type schema:Periodical
    155 sg:person.01200656557.13 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    156 schema:familyName Fuhrer
    157 schema:givenName Michael S.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200656557.13
    159 rdf:type schema:Person
    160 sg:person.01204424303.15 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    161 schema:familyName Chen
    162 schema:givenName Jian-Hao
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204424303.15
    164 rdf:type schema:Person
    165 sg:person.01252537503.55 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    166 schema:familyName Jang
    167 schema:givenName Chaun
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252537503.55
    169 rdf:type schema:Person
    170 sg:person.01320652703.27 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    171 schema:familyName Xiao
    172 schema:givenName Shudong
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320652703.27
    174 rdf:type schema:Person
    175 sg:person.0732374135.99 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    176 schema:familyName Ishigami
    177 schema:givenName Masa
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732374135.99
    179 rdf:type schema:Person
    180 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
    181 https://doi.org/10.1038/nmat1967
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nphys935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024874242
    184 https://doi.org/10.1038/nphys935
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1140/epjst/e2007-00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004428609
    187 https://doi.org/10.1140/epjst/e2007-00221-9
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1002/adma.200701059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028541030
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/0038-1098(79)90051-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034818582
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.sse.2005.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022068559
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1021/nl034841q schema:sameAs https://app.dimensions.ai/details/publication/pub.1012159801
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1021/nl070613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175219
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1063/1.1405826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057703413
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1073/pnas.0704772104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096485
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrev.100.1672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416728
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/physrevb.22.904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060528294
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/physrevb.61.10651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594945
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physrevb.65.235412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603494
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1103/physrevb.68.045426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607097
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1103/physrevb.76.035439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005063860
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1103/physrevb.76.205423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009346404
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1103/physrevb.77.195415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020498077
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1103/physrevlett.100.016602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752631
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1103/physrevlett.84.2941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010300167
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevlett.94.086802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019757442
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1103/physrevlett.95.146805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049722559
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1143/jpsj.21.861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063095955
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1143/jpsj.47.1210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063104439
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1143/jpsj.67.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063117301
    240 rdf:type schema:CreativeWork
    241 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
    242 schema:name Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
    243 Department of Physics, University of Maryland, College Park, Maryland 20742, USA
    244 Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742, USA
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...