An atomic-resolution nanomechanical mass sensor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07-20

AUTHORS

K. Jensen, Kwanpyo Kim, A. Zettl

ABSTRACT

Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency1. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators2,3,4,5,6, which have been operated as precision force7, position8,9 and mass sensors10,11,12,13,14,15. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 × 10−25 kg Hz−1/2 or, equivalently, 0.40 gold atoms Hz−1/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise16,17 measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip. More... »

PAGES

533-537

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2008.200

DOI

http://dx.doi.org/10.1038/nnano.2008.200

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018128387

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18772913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes, Carbon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, 94720, California, USA", 
            "Centre of Integrated Nanomechanical Systems, University of California at, 94720, Berkeley, California, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "K.", 
        "id": "sg:person.01013636177.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013636177.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, 94720, California, USA", 
            "Centre of Integrated Nanomechanical Systems, University of California at, 94720, Berkeley, California, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Kwanpyo", 
        "id": "sg:person.01164472353.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164472353.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, 94720, California, USA", 
            "Centre of Integrated Nanomechanical Systems, University of California at, 94720, Berkeley, California, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zettl", 
        "givenName": "A.", 
        "id": "sg:person.0766475362.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-05287-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036498543", 
          "https://doi.org/10.1007/978-3-662-05287-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930060", 
          "https://doi.org/10.1038/nature02496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350020", 
          "https://doi.org/10.1038/nature02905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045543427", 
          "https://doi.org/10.1038/nature01773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381678a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036830729", 
          "https://doi.org/10.1038/381678a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01337937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027660", 
          "https://doi.org/10.1007/bf01337937"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-20", 
    "datePublishedReg": "2008-07-20", 
    "description": "Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency1. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators2,3,4,5,6, which have been operated as precision force7, position8,9 and mass sensors10,11,12,13,14,15. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3\u00a0\u00d7\u00a010\u221225\u00a0kg\u00a0Hz\u22121/2 or, equivalently, 0.40\u00a0gold atoms Hz\u22121/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise16,17 measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nnano.2008.200", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2992972", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "mass sensitivity", 
      "nanomechanical mass sensors", 
      "material synthesis", 
      "nanomechanical resonators", 
      "mechanical resonator", 
      "mass sensor", 
      "traditional mass spectrometers", 
      "resonator", 
      "mass spectrometer", 
      "lithography", 
      "shot noise", 
      "mass resolution", 
      "fabrication", 
      "semiconductor experiment", 
      "chip", 
      "spectrometer", 
      "devices", 
      "sensors", 
      "gold", 
      "sensitivity", 
      "frequency1", 
      "synthesis", 
      "test samples", 
      "large molecules", 
      "ionization", 
      "small quantities", 
      "advances", 
      "mass", 
      "inertial balance", 
      "Mechanical", 
      "shot", 
      "resolution", 
      "molecules", 
      "shift", 
      "noise", 
      "samples", 
      "experiments", 
      "quantity", 
      "balance"
    ], 
    "name": "An atomic-resolution nanomechanical mass sensor", 
    "pagination": "533-537", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018128387"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2008.200"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18772913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2008.200", 
      "https://app.dimensions.ai/details/publication/pub.1018128387"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_460.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nnano.2008.200"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.200'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.200'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.200'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.200'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      73 URIs      59 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2008.200 schema:about N822b0fca535c4278802bf24115ca1df3
2 Na990d04218874fedad40771ef6641037
3 Nb229e2e595714f859bbbdb46f6fb745e
4 anzsrc-for:10
5 anzsrc-for:1007
6 schema:author N3c6e80a66df641c89221707b412c76c3
7 schema:citation sg:pub.10.1007/978-3-662-05287-7
8 sg:pub.10.1007/bf01337937
9 sg:pub.10.1038/381678a0
10 sg:pub.10.1038/nature01773
11 sg:pub.10.1038/nature02496
12 sg:pub.10.1038/nature02905
13 schema:datePublished 2008-07-20
14 schema:datePublishedReg 2008-07-20
15 schema:description Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency1. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators2,3,4,5,6, which have been operated as precision force7, position8,9 and mass sensors10,11,12,13,14,15. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 × 10−25 kg Hz−1/2 or, equivalently, 0.40 gold atoms Hz−1/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise16,17 measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N306b0b80bf6b4ea29cb88287058e119c
19 N89767dd784254224b25988748925b046
20 sg:journal.1037429
21 schema:keywords Mechanical
22 advances
23 balance
24 chip
25 devices
26 experiments
27 fabrication
28 frequency1
29 gold
30 inertial balance
31 ionization
32 large molecules
33 lithography
34 mass
35 mass resolution
36 mass sensitivity
37 mass sensor
38 mass spectrometer
39 material synthesis
40 mechanical resonator
41 molecules
42 nanomechanical mass sensors
43 nanomechanical resonators
44 noise
45 quantity
46 resolution
47 resonator
48 samples
49 semiconductor experiment
50 sensitivity
51 sensors
52 shift
53 shot
54 shot noise
55 small quantities
56 spectrometer
57 synthesis
58 test samples
59 traditional mass spectrometers
60 schema:name An atomic-resolution nanomechanical mass sensor
61 schema:pagination 533-537
62 schema:productId N30d1b8f2f27a4d1187fc2b35b1d776c7
63 Na5d6514a95f8484d8f25c8e0b494dfab
64 Nf8cdc378b6804b318df2fa4a35e3c44e
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128387
66 https://doi.org/10.1038/nnano.2008.200
67 schema:sdDatePublished 2022-11-24T20:52
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nea0dacf443e446d0aacc61340d4cadb2
70 schema:url https://doi.org/10.1038/nnano.2008.200
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N306b0b80bf6b4ea29cb88287058e119c schema:volumeNumber 3
75 rdf:type schema:PublicationVolume
76 N30d1b8f2f27a4d1187fc2b35b1d776c7 schema:name pubmed_id
77 schema:value 18772913
78 rdf:type schema:PropertyValue
79 N3c6e80a66df641c89221707b412c76c3 rdf:first sg:person.01013636177.01
80 rdf:rest N436c2720ab504265a59138015face5b1
81 N436c2720ab504265a59138015face5b1 rdf:first sg:person.01164472353.89
82 rdf:rest Ne573635b623c4d6abc881f64b68d5f7d
83 N822b0fca535c4278802bf24115ca1df3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Nanotubes, Carbon
85 rdf:type schema:DefinedTerm
86 N89767dd784254224b25988748925b046 schema:issueNumber 9
87 rdf:type schema:PublicationIssue
88 Na5d6514a95f8484d8f25c8e0b494dfab schema:name dimensions_id
89 schema:value pub.1018128387
90 rdf:type schema:PropertyValue
91 Na990d04218874fedad40771ef6641037 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Mass Spectrometry
93 rdf:type schema:DefinedTerm
94 Nb229e2e595714f859bbbdb46f6fb745e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Nanotechnology
96 rdf:type schema:DefinedTerm
97 Ne573635b623c4d6abc881f64b68d5f7d rdf:first sg:person.0766475362.52
98 rdf:rest rdf:nil
99 Nea0dacf443e446d0aacc61340d4cadb2 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nf8cdc378b6804b318df2fa4a35e3c44e schema:name doi
102 schema:value 10.1038/nnano.2008.200
103 rdf:type schema:PropertyValue
104 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
105 schema:name Technology
106 rdf:type schema:DefinedTerm
107 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
108 schema:name Nanotechnology
109 rdf:type schema:DefinedTerm
110 sg:grant.2992972 http://pending.schema.org/fundedItem sg:pub.10.1038/nnano.2008.200
111 rdf:type schema:MonetaryGrant
112 sg:journal.1037429 schema:issn 1748-3387
113 1748-3395
114 schema:name Nature Nanotechnology
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.01013636177.01 schema:affiliation grid-institutes:grid.184769.5
118 schema:familyName Jensen
119 schema:givenName K.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013636177.01
121 rdf:type schema:Person
122 sg:person.01164472353.89 schema:affiliation grid-institutes:grid.184769.5
123 schema:familyName Kim
124 schema:givenName Kwanpyo
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164472353.89
126 rdf:type schema:Person
127 sg:person.0766475362.52 schema:affiliation grid-institutes:grid.184769.5
128 schema:familyName Zettl
129 schema:givenName A.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52
131 rdf:type schema:Person
132 sg:pub.10.1007/978-3-662-05287-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036498543
133 https://doi.org/10.1007/978-3-662-05287-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf01337937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027660
136 https://doi.org/10.1007/bf01337937
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/381678a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036830729
139 https://doi.org/10.1038/381678a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature01773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045543427
142 https://doi.org/10.1038/nature01773
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature02496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930060
145 https://doi.org/10.1038/nature02496
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature02905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350020
148 https://doi.org/10.1038/nature02905
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.184769.5 schema:alternateName Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
151 schema:name Centre of Integrated Nanomechanical Systems, University of California at, 94720, Berkeley, California, USA
152 Department of Physics, University of California at Berkeley, 94720, California, USA
153 Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...