Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07

AUTHORS

Levente Tapasztó, Gergely Dobrik, Philippe Lambin, László P. Biró

ABSTRACT

The practical realization of nanoscale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes, only basic demonstration devices have been realized that require time-consuming processes. This is mainly due to a lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons and bent junctions with nanometre-precision, well-defined widths and predetermined crystallographic orientations, allowing us to fully engineer their electronic structure using scanning tunnelling microscope lithography. The atomic structure and electronic properties of the ribbons have been investigated by scanning tunnelling microscopy and tunnelling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, enabling room-temperature operation of graphene nanoribbon-based devices, is reported. This method avoids the difficulties of assembling nanoscale components and may prove useful in the realization of complete integrated circuits, operating as room-temperature ballistic electronic devices. More... »

PAGES

397-401

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2008.149

DOI

http://dx.doi.org/10.1038/nnano.2008.149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005726293

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18654562


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macromolecular Substances", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Materials Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Scanning Tunneling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Technical Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.419116.a", 
          "name": [
            "Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tapaszt\u00f3", 
        "givenName": "Levente", 
        "id": "sg:person.01171713123.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171713123.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Technical Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.419116.a", 
          "name": [
            "Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dobrik", 
        "givenName": "Gergely", 
        "id": "sg:person.01240026323.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240026323.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Facultes Universitaire Notre Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambin", 
        "givenName": "Philippe", 
        "id": "sg:person.01171233471.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171233471.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Technical Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.419116.a", 
          "name": [
            "Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bir\u00f3", 
        "givenName": "L\u00e1szl\u00f3 P.", 
        "id": "sg:person.0742054653.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742054653.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1142882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000657280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070133j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070133j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009517723", 
          "https://doi.org/10.1038/46241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009517723", 
          "https://doi.org/10.1038/46241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1144359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014941386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1091022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020235641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035164187", 
          "https://doi.org/10.1038/nnano.2007.300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mee.2006.01.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036773216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040736915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072090c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040781043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072090c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040781043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2769764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042768085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047629025", 
          "https://doi.org/10.1038/29954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047629025", 
          "https://doi.org/10.1038/29954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050628739", 
          "https://doi.org/10.1038/34139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050628739", 
          "https://doi.org/10.1038/34139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar010152e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055149600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar010152e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055149600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100204a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055659035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070708c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070708c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.102201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057649778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.235422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.235422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1926293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062170624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1926293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062170624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.244.4904.559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062537745"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07", 
    "datePublishedReg": "2008-07-01", 
    "description": "The practical realization of nanoscale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes, only basic demonstration devices have been realized that require time-consuming processes. This is mainly due to a lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons and bent junctions with nanometre-precision, well-defined widths and predetermined crystallographic orientations, allowing us to fully engineer their electronic structure using scanning tunnelling microscope lithography. The atomic structure and electronic properties of the ribbons have been investigated by scanning tunnelling microscopy and tunnelling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, enabling room-temperature operation of graphene nanoribbon-based devices, is reported. This method avoids the difficulties of assembling nanoscale components and may prove useful in the realization of complete integrated circuits, operating as room-temperature ballistic electronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2008.149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography", 
    "pagination": "397-401", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b487aea35f517aa5261adb2368cf297b378ffae2e265cc44fcf15c918ef6387"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18654562"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2008.149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005726293"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2008.149", 
      "https://app.dimensions.ai/details/publication/pub.1005726293"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000580.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nnano.2008.149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2008.149'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      69 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2008.149 schema:about N12a5c3e1306e4744ae64946d5dd78c16
2 N1816d5cd7d7a48d495053a1427135dfb
3 N1b9912637113421194ddbec85929f86e
4 N41682e5f3b2b4ce7bc99cff34847ffb6
5 N4b1de60fa589403ab4fb28be37fd1711
6 N4b327669007e4b2eb2b54acad147402e
7 N6d7d8a63bceb4ecab51a680318d828ff
8 N9384efae570a4b29929a79c848917ff8
9 N9dc357d6fa6a4f60b115d883a06e4a7b
10 Na2c762c6bee445d091237e74b8c7937a
11 Nb02379716d6c476295f4f7a2f35c7e11
12 anzsrc-for:10
13 anzsrc-for:1007
14 schema:author N60cd7ab344674c758ff5d3643fd27d3e
15 schema:citation sg:pub.10.1038/29954
16 sg:pub.10.1038/34139
17 sg:pub.10.1038/46241
18 sg:pub.10.1038/nature04233
19 sg:pub.10.1038/nmat1849
20 sg:pub.10.1038/nnano.2007.300
21 https://doi.org/10.1016/j.mee.2006.01.206
22 https://doi.org/10.1016/j.physe.2007.06.020
23 https://doi.org/10.1021/ar010152e
24 https://doi.org/10.1021/j100204a002
25 https://doi.org/10.1021/nl0617033
26 https://doi.org/10.1021/nl070133j
27 https://doi.org/10.1021/nl070613a
28 https://doi.org/10.1021/nl070708c
29 https://doi.org/10.1021/nl072090c
30 https://doi.org/10.1063/1.102201
31 https://doi.org/10.1063/1.2769764
32 https://doi.org/10.1103/physrevb.31.805
33 https://doi.org/10.1103/physrevb.68.113406
34 https://doi.org/10.1103/physrevb.74.235422
35 https://doi.org/10.1103/physrevlett.81.5588
36 https://doi.org/10.1103/physrevlett.97.216803
37 https://doi.org/10.1103/physrevlett.98.206805
38 https://doi.org/10.1116/1.1926293
39 https://doi.org/10.1126/science.1091022
40 https://doi.org/10.1126/science.1125925
41 https://doi.org/10.1126/science.1142882
42 https://doi.org/10.1126/science.1144359
43 https://doi.org/10.1126/science.244.4904.559
44 schema:datePublished 2008-07
45 schema:datePublishedReg 2008-07-01
46 schema:description The practical realization of nanoscale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes, only basic demonstration devices have been realized that require time-consuming processes. This is mainly due to a lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons and bent junctions with nanometre-precision, well-defined widths and predetermined crystallographic orientations, allowing us to fully engineer their electronic structure using scanning tunnelling microscope lithography. The atomic structure and electronic properties of the ribbons have been investigated by scanning tunnelling microscopy and tunnelling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, enabling room-temperature operation of graphene nanoribbon-based devices, is reported. This method avoids the difficulties of assembling nanoscale components and may prove useful in the realization of complete integrated circuits, operating as room-temperature ballistic electronic devices.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N78a8d8269e2b430dad06d51cb3488ff5
51 N85ccd7683ae347389f9f75bdc5d885cf
52 sg:journal.1037429
53 schema:name Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
54 schema:pagination 397-401
55 schema:productId N18dc3efb23f5483088e4be5e48b89571
56 N5758c9c7aa474525bb169d56f4a92afb
57 Nabaf0cfafca447ef837c9fedf0095887
58 Ne81b0c67e1654960beab3c490f44cd0b
59 Nf2685fd7509e45508bd6b10e6b3dce87
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726293
61 https://doi.org/10.1038/nnano.2008.149
62 schema:sdDatePublished 2019-04-10T13:28
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nd60cc06f1fe542fbaf9b2843aef0516b
65 schema:url http://www.nature.com/articles/nnano.2008.149
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N12a5c3e1306e4744ae64946d5dd78c16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Surface Properties
71 rdf:type schema:DefinedTerm
72 N1816d5cd7d7a48d495053a1427135dfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Microscopy, Scanning Tunneling
74 rdf:type schema:DefinedTerm
75 N18dc3efb23f5483088e4be5e48b89571 schema:name nlm_unique_id
76 schema:value 101283273
77 rdf:type schema:PropertyValue
78 N1b9912637113421194ddbec85929f86e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Particle Size
80 rdf:type schema:DefinedTerm
81 N41682e5f3b2b4ce7bc99cff34847ffb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Nanotechnology
83 rdf:type schema:DefinedTerm
84 N4b1de60fa589403ab4fb28be37fd1711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Carbon
86 rdf:type schema:DefinedTerm
87 N4b327669007e4b2eb2b54acad147402e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Molecular Conformation
89 rdf:type schema:DefinedTerm
90 N5758c9c7aa474525bb169d56f4a92afb schema:name readcube_id
91 schema:value 1b487aea35f517aa5261adb2368cf297b378ffae2e265cc44fcf15c918ef6387
92 rdf:type schema:PropertyValue
93 N60cd7ab344674c758ff5d3643fd27d3e rdf:first sg:person.01171713123.81
94 rdf:rest Nae72a30de9e545b5812fcd4178809263
95 N6d7d8a63bceb4ecab51a680318d828ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Macromolecular Substances
97 rdf:type schema:DefinedTerm
98 N78a8d8269e2b430dad06d51cb3488ff5 schema:volumeNumber 3
99 rdf:type schema:PublicationVolume
100 N85ccd7683ae347389f9f75bdc5d885cf schema:issueNumber 7
101 rdf:type schema:PublicationIssue
102 N9193d5df9e6147c08869007217902f85 rdf:first sg:person.0742054653.50
103 rdf:rest rdf:nil
104 N9384efae570a4b29929a79c848917ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Photography
106 rdf:type schema:DefinedTerm
107 N9dc357d6fa6a4f60b115d883a06e4a7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Crystallization
109 rdf:type schema:DefinedTerm
110 Na2c762c6bee445d091237e74b8c7937a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Materials Testing
112 rdf:type schema:DefinedTerm
113 Nabaf0cfafca447ef837c9fedf0095887 schema:name doi
114 schema:value 10.1038/nnano.2008.149
115 rdf:type schema:PropertyValue
116 Nae72a30de9e545b5812fcd4178809263 rdf:first sg:person.01240026323.12
117 rdf:rest Nbfacfec1fb5742e3aa8116f9a3c63b93
118 Nb02379716d6c476295f4f7a2f35c7e11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Nanotubes
120 rdf:type schema:DefinedTerm
121 Nbfacfec1fb5742e3aa8116f9a3c63b93 rdf:first sg:person.01171233471.36
122 rdf:rest N9193d5df9e6147c08869007217902f85
123 Nd60cc06f1fe542fbaf9b2843aef0516b schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Ne81b0c67e1654960beab3c490f44cd0b schema:name pubmed_id
126 schema:value 18654562
127 rdf:type schema:PropertyValue
128 Nf2685fd7509e45508bd6b10e6b3dce87 schema:name dimensions_id
129 schema:value pub.1005726293
130 rdf:type schema:PropertyValue
131 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
132 schema:name Technology
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
135 schema:name Nanotechnology
136 rdf:type schema:DefinedTerm
137 sg:journal.1037429 schema:issn 1748-3387
138 1748-3395
139 schema:name Nature Nanotechnology
140 rdf:type schema:Periodical
141 sg:person.01171233471.36 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
142 schema:familyName Lambin
143 schema:givenName Philippe
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171233471.36
145 rdf:type schema:Person
146 sg:person.01171713123.81 schema:affiliation https://www.grid.ac/institutes/grid.419116.a
147 schema:familyName Tapasztó
148 schema:givenName Levente
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171713123.81
150 rdf:type schema:Person
151 sg:person.01240026323.12 schema:affiliation https://www.grid.ac/institutes/grid.419116.a
152 schema:familyName Dobrik
153 schema:givenName Gergely
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240026323.12
155 rdf:type schema:Person
156 sg:person.0742054653.50 schema:affiliation https://www.grid.ac/institutes/grid.419116.a
157 schema:familyName Biró
158 schema:givenName László P.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742054653.50
160 rdf:type schema:Person
161 sg:pub.10.1038/29954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047629025
162 https://doi.org/10.1038/29954
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/34139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050628739
165 https://doi.org/10.1038/34139
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/46241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009517723
168 https://doi.org/10.1038/46241
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
171 https://doi.org/10.1038/nature04233
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
174 https://doi.org/10.1038/nmat1849
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2007.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035164187
177 https://doi.org/10.1038/nnano.2007.300
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.mee.2006.01.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036773216
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ar010152e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055149600
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/j100204a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055659035
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/nl0617033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052359345
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/nl070133j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009133348
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nl070613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175219
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/nl070708c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217210
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/nl072090c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040781043
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.102201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057649778
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.2769764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042768085
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.31.805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537812
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.68.113406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607493
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.74.235422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619640
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.81.5588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818695
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1116/1.1926293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062170624
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.1091022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020235641
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1142882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000657280
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1144359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014941386
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.244.4904.559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537745
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.419116.a schema:alternateName Institute for Technical Physics and Materials Science
226 schema:name Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
229 schema:name Facultes Universitaire Notre Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...