Processable aqueous dispersions of graphene nanosheets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Dan Li, Marc B Müller, Scott Gilje, Richard B Kaner, Gordon G Wallace

ABSTRACT

Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications. More... »

PAGES

101-105

References to SciGraph publications

Journal

TITLE

Nature Nanotechnology

ISSUE

2

VOLUME

3

Author Affiliations

Related Patents

  • Conductive Graphene Polymer Binder For Electrochemical Cell Electrodes
  • Method Of Programming A Nonvolatile Memory Device Containing A Carbon Storage Material
  • Graphene-Based Films In Sensor Applications
  • Method For The Preparation Of Polyaniline/Reduced Graphene Oxide Composites
  • System For Detecting Rare Cells
  • Titania-Graphene Anode Electrode Paper
  • Methods Of Producing Graphene Quantum Dots From Coal And Coke
  • Graphene Production
  • Electronic Device
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Graphene Production
  • Metal Nanoparticle Monolayer
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Nanotube Based Optical Fuse Device And Method
  • Material And Applications Therefor
  • Methods For Producing Functionalized Graphenes
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • Methods Of Flash Reduction And Patterning Of Graphite Oxide And Its Polymer Composites
  • High-Throughput Solution Processing Of Large Scale Graphene And Device Applications
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid Three-Dimensional Architecture For Energy Storage Devices
  • Production Of Graphene
  • Graphene Production
  • Graphene Materials And Improved Methods Of Making, Drying, And Applications
  • Inkjet-Printed Flexible Electronic Components From Graphene Oxide
  • Dispersible And Conductive Nano Graphene Platelets
  • Graphene Dispersions
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • System And Method For Detecting Number Of Layers Of A Few-Layer Graphene
  • Graphite Microfluids
  • Nonvolatile Memory Cell Including Carbon Storage Element Formed On A Silicide Layer
  • Material And Applications Therefor
  • Carbon Electrodes
  • Polypeptides And Their Use
  • Light Emitting Body
  • High-Throughput Graphene Printing And Selective Transfer Using A Localized Laser Heating Technique
  • Methods For Producing Functionalized Graphenes
  • Graphite Oxide Coated Particulate Material And Method Of Making Thereof
  • Reduction Of Graphene Oxide To Graphene In High Boiling Point Solvents
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • Nano-Coatings For Articles
  • Graph Dispersions
  • Procedure For Obtaining Graphene Oxide Nano-Platelets And Derivates And Graphene Oxide Non-Platelets Thus Obtained
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • Lithium Ion Batteries With Titania/Graphene Anodes
  • Method Of Making Nonvolatile Memory Cell Containing Carbon Resistivity Switching As A Storage Element By Low Temperature Processing
  • Method For Preparing Graphene Sheets From Turbostratic Graphitic Structure And Graphene Sheets Prepared Thereby
  • Procedure For Obtaining Graphene Oxide Nano-Platelets And Derivates And Graphene Oxide Non-Platelets Thus Obtained
  • Production Of Graphene
  • Granules Of Graphene Oxide By Spray Drying
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Sidewall Structured Switchable Resistor Cell
  • Direct Chemical Vapor Deposition Of Graphene On Dielectric Surfaces
  • Nanotube-Based Optical Fuse Device And Method Of Blocking Light Transmission By Means Of This Device
  • Graphene Oxide Deoxygenation
  • Nitrogen-Containing Graphene Structure, And Phosphor Dispersion Liquid
  • Method For Preparing Graphene Sheets From Turbostratic Graphitic Structure And Graphene Sheets Prepared Thereby
  • Nano-Coatings For Articles
  • Co-Flow Microfluidic Device For Polymersome Formation
  • Method For Preparing Microstructure Arrays On The Surface Of Thin Film Material
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Graphene Composition, Method Of Forming A Graphene Composition And Sensor System Comprising A Graphene Composition
  • Hybrid Polymer Composite Fiber Including Graphene And Carbon Nanotube, And Method For Manufacturing Same
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • Nanotube-Based Optical Fuse Device And Method Of Blocking Light Transmission By Means Of This Device
  • Microfluidic Device And Method For Detecting Rare Cells
  • Method Of Forming A Film Of Graphite Oxide Single Layers, And Applications Of Same
  • Supercritical Fluid Process For Producing Nano Graphene Platelets
  • Graphene Compositions
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Carbon Electrodes
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Titania-Graphene Anode Electrode Paper
  • Layer-By-Layer Assembly Of Graphene Oxide Membranes Via Electrostatic Interaction And Eludication Of Water And Solute Transport Mechanisms
  • Process For Producing Dispersible And Conductive Nano Graphene Platelets From Non-Oxidized Graphitic Materials
  • Method Of Manufacturing Graphene Hybrid Material And Graphene Hybrid Material Manufactured By The Method
  • Mesoporous Metal Oxide Graphene Nanocomposite Materials
  • Method For Producing Few-Layer Graphene
  • Dissolution Of Graphite, Graphite And Graphene Nanoribbons In Superacid Solutions And Manipulation Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2007.451

    DOI

    http://dx.doi.org/10.1038/nnano.2007.451

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025138385

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654470


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Colloids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wollongong", 
              "id": "https://www.grid.ac/institutes/grid.1007.6", 
              "name": [
                "ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2522, Australia. danli@uow.edu.au; gwallace@uow.edu.au"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dan", 
            "id": "sg:person.014664114333.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664114333.08"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00fcller", 
            "givenName": "Marc B", 
            "id": "sg:person.01324210543.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324210543.92"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gilje", 
            "givenName": "Scott", 
            "id": "sg:person.01372323743.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323743.44"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kaner", 
            "givenName": "Richard B", 
            "id": "sg:person.0737344633.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737344633.88"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Wallace", 
            "givenName": "Gordon G", 
            "id": "sg:person.01305202143.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305202143.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1039/b201013p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004643579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19960080806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2007.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007174267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b417803n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009721448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5330.1232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010559642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b512799h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016221609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b504020e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016541051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b504020e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016541051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja060680r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019941215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja060680r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019941215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073448", 
              "https://doi.org/10.1038/nature06016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2004.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021765848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200400760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025948130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm981085u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027099600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm981085u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027099600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200600113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034738270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl072090c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040781043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl072090c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040781043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2004.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047914719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm0630800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm0630800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010160v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051421925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010160v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051421925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0717715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052736427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0717715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052736427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010155r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055149601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010155r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055149601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm060258+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055412206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm060258+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055412206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp044741o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056056435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp044741o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056056435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la000442o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056139108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la000442o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056139108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0620132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0620132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/9781847550200-00026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089339674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-02", 
        "datePublishedReg": "2008-02-01", 
        "description": "Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nnano.2007.451", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Processable aqueous dispersions of graphene nanosheets", 
        "pagination": "101-105", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77c24b88de064ac5380afd43bb928b19543e60d3246bedc30d12d388045939ea"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654470"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2007.451"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025138385"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2007.451", 
          "https://app.dimensions.ai/details/publication/pub.1025138385"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nnano/journal/v3/n2/full/nnano.2007.451.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      71 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2007.451 schema:about N043064a1bbbf4acab44cd870215a8aa4
    2 N069d609e32b64dd7aeb2ac0abc01d7ae
    3 N0dc8a2ff84fe49dfb55f5c3e410026e6
    4 N817bd36b57ae476cbc8226460b95c2a5
    5 N82c661cfddb84ceb91a8fb0aa1b03015
    6 N864fd7badb7f45358161e9df7151c73b
    7 N8eb3e40d99eb4c3c81dc11a984eaca65
    8 N8ecf68fff64948abbfb2e57ae76dbe4f
    9 N9b41ea2c7ddf4afd91b65b6fab51c524
    10 Nced5aac8ccdd4b9d8b81ff38d5534c0f
    11 Nedf9db3dc2984b298fad31cd829198fc
    12 Nf8f3e8259a09493da09315a86a18d49d
    13 anzsrc-for:09
    14 anzsrc-for:0912
    15 schema:author Nbf1759634eb441cc95b5adf5e0ea4bf9
    16 schema:citation sg:pub.10.1038/nature04969
    17 sg:pub.10.1038/nature06016
    18 sg:pub.10.1038/nmat1849
    19 https://doi.org/10.1002/adma.19960080806
    20 https://doi.org/10.1002/adma.200400760
    21 https://doi.org/10.1002/adma.200600113
    22 https://doi.org/10.1016/j.carbon.2004.08.025
    23 https://doi.org/10.1016/j.carbon.2004.10.009
    24 https://doi.org/10.1016/j.carbon.2007.02.034
    25 https://doi.org/10.1021/ar010155r
    26 https://doi.org/10.1021/ar010160v
    27 https://doi.org/10.1021/cm060258+
    28 https://doi.org/10.1021/cm0630800
    29 https://doi.org/10.1021/cm981085u
    30 https://doi.org/10.1021/ja01539a017
    31 https://doi.org/10.1021/ja060680r
    32 https://doi.org/10.1021/jp044741o
    33 https://doi.org/10.1021/jp9731821
    34 https://doi.org/10.1021/la000442o
    35 https://doi.org/10.1021/nl0620132
    36 https://doi.org/10.1021/nl0717715
    37 https://doi.org/10.1021/nl072090c
    38 https://doi.org/10.1039/9781847550200-00026
    39 https://doi.org/10.1039/b201013p
    40 https://doi.org/10.1039/b417803n
    41 https://doi.org/10.1039/b504020e
    42 https://doi.org/10.1039/b512799h
    43 https://doi.org/10.1126/science.1060928
    44 https://doi.org/10.1126/science.1102896
    45 https://doi.org/10.1126/science.277.5330.1232
    46 schema:datePublished 2008-02
    47 schema:datePublishedReg 2008-02-01
    48 schema:description Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree false
    52 schema:isPartOf N8f4dd499aeb24f639f73c03344d5d44e
    53 Nbc16430b78944237adbd6504172da76a
    54 sg:journal.1037429
    55 schema:name Processable aqueous dispersions of graphene nanosheets
    56 schema:pagination 101-105
    57 schema:productId N5ae7e0a6e6084ebeb2b2b6e06254c308
    58 N5dbc6cb6ebbc4913af43d11cc43d0776
    59 N893458290bb34586bb6d2c7299874171
    60 Na31de86ec1954e24ba8bdaa4888165a6
    61 Nd8e3f4e68f7242d3acbeb0ddddd10930
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    63 https://doi.org/10.1038/nnano.2007.451
    64 schema:sdDatePublished 2019-04-11T00:55
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N3f3059d70944418996f78cb57a60beb0
    67 schema:url http://www.nature.com/nnano/journal/v3/n2/full/nnano.2007.451.html
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N043064a1bbbf4acab44cd870215a8aa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Macromolecular Substances
    73 rdf:type schema:DefinedTerm
    74 N069d609e32b64dd7aeb2ac0abc01d7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Crystallization
    76 rdf:type schema:DefinedTerm
    77 N0dc8a2ff84fe49dfb55f5c3e410026e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Materials Testing
    79 rdf:type schema:DefinedTerm
    80 N3f3059d70944418996f78cb57a60beb0 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N52478b69b0f44c50bef1a59802bc4aa6 rdf:first sg:person.01305202143.42
    83 rdf:rest rdf:nil
    84 N5ae7e0a6e6084ebeb2b2b6e06254c308 schema:name doi
    85 schema:value 10.1038/nnano.2007.451
    86 rdf:type schema:PropertyValue
    87 N5dbc6cb6ebbc4913af43d11cc43d0776 schema:name nlm_unique_id
    88 schema:value 101283273
    89 rdf:type schema:PropertyValue
    90 N6933947af84a478db14c413fa5eaad18 rdf:first sg:person.01324210543.92
    91 rdf:rest N78e30110a36148e7811509577e5b1e5a
    92 N78e30110a36148e7811509577e5b1e5a rdf:first sg:person.01372323743.44
    93 rdf:rest N83aaa8cf35c34c24ba0e745a605848fc
    94 N817bd36b57ae476cbc8226460b95c2a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Nanotechnology
    96 rdf:type schema:DefinedTerm
    97 N82c661cfddb84ceb91a8fb0aa1b03015 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Particle Size
    99 rdf:type schema:DefinedTerm
    100 N83aaa8cf35c34c24ba0e745a605848fc rdf:first sg:person.0737344633.88
    101 rdf:rest N52478b69b0f44c50bef1a59802bc4aa6
    102 N864fd7badb7f45358161e9df7151c73b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Colloids
    104 rdf:type schema:DefinedTerm
    105 N893458290bb34586bb6d2c7299874171 schema:name pubmed_id
    106 schema:value 18654470
    107 rdf:type schema:PropertyValue
    108 N8eb3e40d99eb4c3c81dc11a984eaca65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Molecular Conformation
    110 rdf:type schema:DefinedTerm
    111 N8ecf68fff64948abbfb2e57ae76dbe4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Surface Properties
    113 rdf:type schema:DefinedTerm
    114 N8f4dd499aeb24f639f73c03344d5d44e schema:volumeNumber 3
    115 rdf:type schema:PublicationVolume
    116 N9b41ea2c7ddf4afd91b65b6fab51c524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Nanostructures
    118 rdf:type schema:DefinedTerm
    119 Na31de86ec1954e24ba8bdaa4888165a6 schema:name readcube_id
    120 schema:value 77c24b88de064ac5380afd43bb928b19543e60d3246bedc30d12d388045939ea
    121 rdf:type schema:PropertyValue
    122 Nbc16430b78944237adbd6504172da76a schema:issueNumber 2
    123 rdf:type schema:PublicationIssue
    124 Nbf1759634eb441cc95b5adf5e0ea4bf9 rdf:first sg:person.014664114333.08
    125 rdf:rest N6933947af84a478db14c413fa5eaad18
    126 Nced5aac8ccdd4b9d8b81ff38d5534c0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Carbon
    128 rdf:type schema:DefinedTerm
    129 Nd8e3f4e68f7242d3acbeb0ddddd10930 schema:name dimensions_id
    130 schema:value pub.1025138385
    131 rdf:type schema:PropertyValue
    132 Nedf9db3dc2984b298fad31cd829198fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Membranes, Artificial
    134 rdf:type schema:DefinedTerm
    135 Nf8f3e8259a09493da09315a86a18d49d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Water
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Engineering
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Materials Engineering
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1037429 schema:issn 1748-3387
    145 1748-3395
    146 schema:name Nature Nanotechnology
    147 rdf:type schema:Periodical
    148 sg:person.01305202143.42 schema:familyName Wallace
    149 schema:givenName Gordon G
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305202143.42
    151 rdf:type schema:Person
    152 sg:person.01324210543.92 schema:familyName Müller
    153 schema:givenName Marc B
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324210543.92
    155 rdf:type schema:Person
    156 sg:person.01372323743.44 schema:familyName Gilje
    157 schema:givenName Scott
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323743.44
    159 rdf:type schema:Person
    160 sg:person.014664114333.08 schema:affiliation https://www.grid.ac/institutes/grid.1007.6
    161 schema:familyName Li
    162 schema:givenName Dan
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664114333.08
    164 rdf:type schema:Person
    165 sg:person.0737344633.88 schema:familyName Kaner
    166 schema:givenName Richard B
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737344633.88
    168 rdf:type schema:Person
    169 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    170 https://doi.org/10.1038/nature04969
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature06016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073448
    173 https://doi.org/10.1038/nature06016
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    176 https://doi.org/10.1038/nmat1849
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/adma.19960080806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784021
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/adma.200400760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948130
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/adma.200600113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034738270
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.carbon.2004.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047914719
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.carbon.2004.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765848
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.carbon.2007.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174267
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1021/ar010155r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055149601
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1021/ar010160v schema:sameAs https://app.dimensions.ai/details/publication/pub.1051421925
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1021/cm060258+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1055412206
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1021/cm0630800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318969
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/cm981085u schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099600
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1021/ja060680r schema:sameAs https://app.dimensions.ai/details/publication/pub.1019941215
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/jp044741o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056056435
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/jp9731821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578535
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/la000442o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056139108
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl0620132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216898
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/nl0717715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052736427
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/nl072090c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040781043
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1039/9781847550200-00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089339674
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1039/b201013p schema:sameAs https://app.dimensions.ai/details/publication/pub.1004643579
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1039/b417803n schema:sameAs https://app.dimensions.ai/details/publication/pub.1009721448
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1039/b504020e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016541051
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1039/b512799h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221609
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1126/science.1060928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559716
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1126/science.277.5330.1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559642
    231 rdf:type schema:CreativeWork
    232 https://www.grid.ac/institutes/grid.1007.6 schema:alternateName University of Wollongong
    233 schema:name ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2522, Australia. danli@uow.edu.au; gwallace@uow.edu.au
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...