Processable aqueous dispersions of graphene nanosheets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Dan Li, Marc B Müller, Scott Gilje, Richard B Kaner, Gordon G Wallace

ABSTRACT

Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications. More... »

PAGES

101-105

References to SciGraph publications

Journal

TITLE

Nature Nanotechnology

ISSUE

2

VOLUME

3

Author Affiliations

Related Patents

  • Conductive Graphene Polymer Binder For Electrochemical Cell Electrodes
  • Method Of Programming A Nonvolatile Memory Device Containing A Carbon Storage Material
  • Method For The Preparation Of Polyaniline/Reduced Graphene Oxide Composites
  • Graphene-Based Films In Sensor Applications
  • System For Detecting Rare Cells
  • Electronic Device
  • Methods Of Producing Graphene Quantum Dots From Coal And Coke
  • Graphene Production
  • Titania-Graphene Anode Electrode Paper
  • Metal Nanoparticle Monolayer
  • Graphene Production
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Nanotube Based Optical Fuse Device And Method
  • Material And Applications Therefor
  • Methods For Producing Functionalized Graphenes
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • Methods Of Flash Reduction And Patterning Of Graphite Oxide And Its Polymer Composites
  • High-Throughput Solution Processing Of Large Scale Graphene And Device Applications
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid Three-Dimensional Architecture For Energy Storage Devices
  • Production Of Graphene
  • Graphene Production
  • Material And Applications Therefor
  • Nonvolatile Memory Cell Including Carbon Storage Element Formed On A Silicide Layer
  • Graphene Materials And Improved Methods Of Making, Drying, And Applications
  • Carbon Electrodes
  • Polypeptides And Their Use
  • Graphite Microfluids
  • Inkjet-Printed Flexible Electronic Components From Graphene Oxide
  • High-Throughput Graphene Printing And Selective Transfer Using A Localized Laser Heating Technique
  • Methods For Producing Functionalized Graphenes
  • Dispersible And Conductive Nano Graphene Platelets
  • Graphene Dispersions
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • Light Emitting Body
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • System And Method For Detecting Number Of Layers Of A Few-Layer Graphene
  • Reduction Of Graphene Oxide To Graphene In High Boiling Point Solvents
  • Graphite Oxide Coated Particulate Material And Method Of Making Thereof
  • Nanocomposite Of Graphene And Metal Oxide Materials
  • Procedure For Obtaining Graphene Oxide Nano-Platelets And Derivates And Graphene Oxide Non-Platelets Thus Obtained
  • Graph Dispersions
  • High-Throughput Imaging Of Graphene Based Sheets By Fluorescence Quenching Microscopy And Applications Of Same
  • Lithium Ion Batteries With Titania/Graphene Anodes
  • Nano-Coatings For Articles
  • Production Of Graphene
  • Granules Of Graphene Oxide By Spray Drying
  • Co-Flow Microfluidic Device For Polymersome Formation
  • Sidewall Structured Switchable Resistor Cell
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Method Of Making Nonvolatile Memory Cell Containing Carbon Resistivity Switching As A Storage Element By Low Temperature Processing
  • Method For Preparing Graphene Sheets From Turbostratic Graphitic Structure And Graphene Sheets Prepared Thereby
  • Nitrogen-Containing Graphene Structure, And Phosphor Dispersion Liquid
  • Direct Chemical Vapor Deposition Of Graphene On Dielectric Surfaces
  • Procedure For Obtaining Graphene Oxide Nano-Platelets And Derivates And Graphene Oxide Non-Platelets Thus Obtained
  • Graphene Oxide Deoxygenation
  • Graphene Composition, Method Of Forming A Graphene Composition And Sensor System Comprising A Graphene Composition
  • Nanotube-Based Optical Fuse Device And Method Of Blocking Light Transmission By Means Of This Device
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Nano-Coatings For Articles
  • Method For Preparing Graphene Sheets From Turbostratic Graphitic Structure And Graphene Sheets Prepared Thereby
  • Method For Preparing Microstructure Arrays On The Surface Of Thin Film Material
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • Hybrid Polymer Composite Fiber Including Graphene And Carbon Nanotube, And Method For Manufacturing Same
  • Multilevel Nonvolatile Memory Device Containing A Carbon Storage Material And Methods Of Making And Using Same
  • Graphene Compositions
  • Microfluidic Device And Method For Detecting Rare Cells
  • Nanotube-Based Optical Fuse Device And Method Of Blocking Light Transmission By Means Of This Device
  • Method Of Forming A Film Of Graphite Oxide Single Layers, And Applications Of Same
  • Process For Producing Dispersible And Conductive Nano Graphene Platelets From Non-Oxidized Graphitic Materials
  • Self Assembled Multi-Layer Nanocomposite Of Graphene And Metal Oxide Materials
  • Titania-Graphene Anode Electrode Paper
  • Method For Producing Few-Layer Graphene
  • Dissolution Of Graphite, Graphite And Graphene Nanoribbons In Superacid Solutions And Manipulation Thereof
  • Supercritical Fluid Process For Producing Nano Graphene Platelets
  • Layer-By-Layer Assembly Of Graphene Oxide Membranes Via Electrostatic Interaction And Eludication Of Water And Solute Transport Mechanisms
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Mesoporous Metal Oxide Graphene Nanocomposite Materials
  • Method Of Manufacturing Graphene Hybrid Material And Graphene Hybrid Material Manufactured By The Method
  • Carbon Electrodes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2007.451

    DOI

    http://dx.doi.org/10.1038/nnano.2007.451

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025138385

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654470


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Colloids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wollongong", 
              "id": "https://www.grid.ac/institutes/grid.1007.6", 
              "name": [
                "ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2522, Australia. danli@uow.edu.au; gwallace@uow.edu.au"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dan", 
            "id": "sg:person.014664114333.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664114333.08"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00fcller", 
            "givenName": "Marc B", 
            "id": "sg:person.01324210543.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324210543.92"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gilje", 
            "givenName": "Scott", 
            "id": "sg:person.01372323743.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323743.44"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kaner", 
            "givenName": "Richard B", 
            "id": "sg:person.0737344633.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737344633.88"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Wallace", 
            "givenName": "Gordon G", 
            "id": "sg:person.01305202143.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305202143.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1039/b201013p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004643579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19960080806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2007.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007174267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b417803n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009721448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5330.1232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010559642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b512799h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016221609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b504020e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016541051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b504020e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016541051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja060680r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019941215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja060680r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019941215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073448", 
              "https://doi.org/10.1038/nature06016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2004.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021765848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200400760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025948130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm981085u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027099600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm981085u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027099600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200600113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034738270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl072090c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040781043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl072090c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040781043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2004.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047914719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm0630800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm0630800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010160v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051421925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010160v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051421925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0717715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052736427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0717715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052736427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010155r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055149601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar010155r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055149601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm060258+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055412206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm060258+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055412206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp044741o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056056435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp044741o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056056435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la000442o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056139108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la000442o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056139108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0620132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0620132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/9781847550200-00026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089339674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-02", 
        "datePublishedReg": "2008-02-01", 
        "description": "Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nnano.2007.451", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Processable aqueous dispersions of graphene nanosheets", 
        "pagination": "101-105", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77c24b88de064ac5380afd43bb928b19543e60d3246bedc30d12d388045939ea"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654470"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2007.451"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025138385"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2007.451", 
          "https://app.dimensions.ai/details/publication/pub.1025138385"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nnano/journal/v3/n2/full/nnano.2007.451.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.451'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      71 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2007.451 schema:about N0b075bc527af49f88e725c6d693d7564
    2 N23c774fa36fc4f8b8d9f7b1b8b220b0d
    3 N2fb9dc401ce144b28c6c818c5719473b
    4 N382ce600a52545f689f67bdeee8eda4e
    5 N384224d9f45c43e7be8b247370387f96
    6 N3fa3c62dcdbb4bfcba80919e3a5c969a
    7 N55c1a2c33d37458e83e262e82be00095
    8 N60e03049fb8a4927a4cd855ebf1b6723
    9 N7a47f20f4df240b48954d6d95208ff53
    10 N87d12f7b77474fc59c4157195ec7d603
    11 N990525c5a2ee45229a6fce7ea4603ec7
    12 Ne150247433bb46b08cf63b70e8fa0567
    13 anzsrc-for:09
    14 anzsrc-for:0912
    15 schema:author N76b90ba768b94fa0891ab65629ef79a7
    16 schema:citation sg:pub.10.1038/nature04969
    17 sg:pub.10.1038/nature06016
    18 sg:pub.10.1038/nmat1849
    19 https://doi.org/10.1002/adma.19960080806
    20 https://doi.org/10.1002/adma.200400760
    21 https://doi.org/10.1002/adma.200600113
    22 https://doi.org/10.1016/j.carbon.2004.08.025
    23 https://doi.org/10.1016/j.carbon.2004.10.009
    24 https://doi.org/10.1016/j.carbon.2007.02.034
    25 https://doi.org/10.1021/ar010155r
    26 https://doi.org/10.1021/ar010160v
    27 https://doi.org/10.1021/cm060258+
    28 https://doi.org/10.1021/cm0630800
    29 https://doi.org/10.1021/cm981085u
    30 https://doi.org/10.1021/ja01539a017
    31 https://doi.org/10.1021/ja060680r
    32 https://doi.org/10.1021/jp044741o
    33 https://doi.org/10.1021/jp9731821
    34 https://doi.org/10.1021/la000442o
    35 https://doi.org/10.1021/nl0620132
    36 https://doi.org/10.1021/nl0717715
    37 https://doi.org/10.1021/nl072090c
    38 https://doi.org/10.1039/9781847550200-00026
    39 https://doi.org/10.1039/b201013p
    40 https://doi.org/10.1039/b417803n
    41 https://doi.org/10.1039/b504020e
    42 https://doi.org/10.1039/b512799h
    43 https://doi.org/10.1126/science.1060928
    44 https://doi.org/10.1126/science.1102896
    45 https://doi.org/10.1126/science.277.5330.1232
    46 schema:datePublished 2008-02
    47 schema:datePublishedReg 2008-02-01
    48 schema:description Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree false
    52 schema:isPartOf N8a68fd6ccd404119b68db1e5310d9900
    53 Ne3f0217555a54f0289a20cc3da6acef4
    54 sg:journal.1037429
    55 schema:name Processable aqueous dispersions of graphene nanosheets
    56 schema:pagination 101-105
    57 schema:productId N0b1705a16ea84656834455445b160201
    58 N583bf757520b4597b1ff573246f5ed7d
    59 Na723c8af1ef145dab002550606a1c06a
    60 Nc48960ccfda548ceb88518c59a4284db
    61 Nd9a0cb0f8a73445198814264928870a0
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    63 https://doi.org/10.1038/nnano.2007.451
    64 schema:sdDatePublished 2019-04-11T00:55
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N8b1e9dd7a1ab4391bfa73eb4c977d82a
    67 schema:url http://www.nature.com/nnano/journal/v3/n2/full/nnano.2007.451.html
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N0b075bc527af49f88e725c6d693d7564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Membranes, Artificial
    73 rdf:type schema:DefinedTerm
    74 N0b1705a16ea84656834455445b160201 schema:name readcube_id
    75 schema:value 77c24b88de064ac5380afd43bb928b19543e60d3246bedc30d12d388045939ea
    76 rdf:type schema:PropertyValue
    77 N23c774fa36fc4f8b8d9f7b1b8b220b0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Colloids
    79 rdf:type schema:DefinedTerm
    80 N2a42571af5334ee9bba5867165ff559b rdf:first sg:person.01324210543.92
    81 rdf:rest N88598cbb47194157aea285f3fe436c30
    82 N2fb9dc401ce144b28c6c818c5719473b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Materials Testing
    84 rdf:type schema:DefinedTerm
    85 N382ce600a52545f689f67bdeee8eda4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Carbon
    87 rdf:type schema:DefinedTerm
    88 N384224d9f45c43e7be8b247370387f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Crystallization
    90 rdf:type schema:DefinedTerm
    91 N3fa3c62dcdbb4bfcba80919e3a5c969a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Nanostructures
    93 rdf:type schema:DefinedTerm
    94 N55c1a2c33d37458e83e262e82be00095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Molecular Conformation
    96 rdf:type schema:DefinedTerm
    97 N583bf757520b4597b1ff573246f5ed7d schema:name pubmed_id
    98 schema:value 18654470
    99 rdf:type schema:PropertyValue
    100 N60e03049fb8a4927a4cd855ebf1b6723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Particle Size
    102 rdf:type schema:DefinedTerm
    103 N6623e4aaeb8648a7b21874f279a76bbb rdf:first sg:person.01305202143.42
    104 rdf:rest rdf:nil
    105 N76b90ba768b94fa0891ab65629ef79a7 rdf:first sg:person.014664114333.08
    106 rdf:rest N2a42571af5334ee9bba5867165ff559b
    107 N79b8846648fb4d9fb398bd2dd04c1f5e rdf:first sg:person.0737344633.88
    108 rdf:rest N6623e4aaeb8648a7b21874f279a76bbb
    109 N7a47f20f4df240b48954d6d95208ff53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Nanotechnology
    111 rdf:type schema:DefinedTerm
    112 N87d12f7b77474fc59c4157195ec7d603 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Surface Properties
    114 rdf:type schema:DefinedTerm
    115 N88598cbb47194157aea285f3fe436c30 rdf:first sg:person.01372323743.44
    116 rdf:rest N79b8846648fb4d9fb398bd2dd04c1f5e
    117 N8a68fd6ccd404119b68db1e5310d9900 schema:volumeNumber 3
    118 rdf:type schema:PublicationVolume
    119 N8b1e9dd7a1ab4391bfa73eb4c977d82a schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N990525c5a2ee45229a6fce7ea4603ec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Macromolecular Substances
    123 rdf:type schema:DefinedTerm
    124 Na723c8af1ef145dab002550606a1c06a schema:name doi
    125 schema:value 10.1038/nnano.2007.451
    126 rdf:type schema:PropertyValue
    127 Nc48960ccfda548ceb88518c59a4284db schema:name nlm_unique_id
    128 schema:value 101283273
    129 rdf:type schema:PropertyValue
    130 Nd9a0cb0f8a73445198814264928870a0 schema:name dimensions_id
    131 schema:value pub.1025138385
    132 rdf:type schema:PropertyValue
    133 Ne150247433bb46b08cf63b70e8fa0567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Water
    135 rdf:type schema:DefinedTerm
    136 Ne3f0217555a54f0289a20cc3da6acef4 schema:issueNumber 2
    137 rdf:type schema:PublicationIssue
    138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Engineering
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Materials Engineering
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1037429 schema:issn 1748-3387
    145 1748-3395
    146 schema:name Nature Nanotechnology
    147 rdf:type schema:Periodical
    148 sg:person.01305202143.42 schema:familyName Wallace
    149 schema:givenName Gordon G
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305202143.42
    151 rdf:type schema:Person
    152 sg:person.01324210543.92 schema:familyName Müller
    153 schema:givenName Marc B
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324210543.92
    155 rdf:type schema:Person
    156 sg:person.01372323743.44 schema:familyName Gilje
    157 schema:givenName Scott
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323743.44
    159 rdf:type schema:Person
    160 sg:person.014664114333.08 schema:affiliation https://www.grid.ac/institutes/grid.1007.6
    161 schema:familyName Li
    162 schema:givenName Dan
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664114333.08
    164 rdf:type schema:Person
    165 sg:person.0737344633.88 schema:familyName Kaner
    166 schema:givenName Richard B
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737344633.88
    168 rdf:type schema:Person
    169 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    170 https://doi.org/10.1038/nature04969
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature06016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073448
    173 https://doi.org/10.1038/nature06016
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    176 https://doi.org/10.1038/nmat1849
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/adma.19960080806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784021
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/adma.200400760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948130
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/adma.200600113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034738270
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.carbon.2004.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047914719
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.carbon.2004.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765848
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.carbon.2007.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174267
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1021/ar010155r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055149601
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1021/ar010160v schema:sameAs https://app.dimensions.ai/details/publication/pub.1051421925
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1021/cm060258+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1055412206
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1021/cm0630800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318969
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/cm981085u schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099600
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1021/ja060680r schema:sameAs https://app.dimensions.ai/details/publication/pub.1019941215
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/jp044741o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056056435
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/jp9731821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578535
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/la000442o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056139108
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl0620132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216898
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/nl0717715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052736427
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/nl072090c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040781043
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1039/9781847550200-00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089339674
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1039/b201013p schema:sameAs https://app.dimensions.ai/details/publication/pub.1004643579
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1039/b417803n schema:sameAs https://app.dimensions.ai/details/publication/pub.1009721448
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1039/b504020e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016541051
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1039/b512799h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221609
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1126/science.1060928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559716
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1126/science.277.5330.1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559642
    231 rdf:type schema:CreativeWork
    232 https://www.grid.ac/institutes/grid.1007.6 schema:alternateName University of Wollongong
    233 schema:name ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2522, Australia. danli@uow.edu.au; gwallace@uow.edu.au
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...