High-performance lithium battery anodes using silicon nanowires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins, Yi Cui

ABSTRACT

There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling. More... »

PAGES

31-35

Journal

TITLE

Nature Nanotechnology

ISSUE

1

VOLUME

3

Related Patents

  • Porous Battery Electrode For A Rechargeable Battery And Method Of Making The Electrode
  • Crystalline-Amorphous Nanowires For Battery Electrodes
  • Group Iv Metal Or Semiconductor Nanowire Fabric
  • Positive Electrode For Lithium Secondary Battery, Manufacturing Method Thereof, And Lithium Secondary Battery
  • Battery Designs With High Capacity Anode Materials And Cathode Materials
  • Nano Graphene Reinforced Nanocomposite Particles For Lithium Battery Electrodes
  • Nanowire Synthesis From Vapor And Solid Sources
  • Bacteria/Transition Metal Oxides Organic-Inorganic Composite And Method For Manufacturing The Same
  • Semi-Solid Electrodes Having High Rate Capability
  • Energy Storage Devices
  • Power Storage Device, Electrode Thereof, And Method For Manufacturing Power Storage Device
  • Apparatus Comprising Nanowires
  • Negative Electrode Including Group 14 Metal/Metalloid Nanotubes, Lithium Battery Including The Negative Electrode, And Method Of Manufacturing The Negative Electrode
  • Silicon Whisker And Carbon Nanofiber Composite Anode
  • Energy Storage Devices Including Silicon And Graphite
  • Nanowire Device With Alumina Passivation Layer And Methods Of Making Same
  • Carbon Material And Method For Producing Same
  • Fade-Resistant High Capacity Electrodes For A Lithium-Ion Battery
  • Composite Compositions, Negative Electrodes With Composite Compositions And Corresponding Batteries
  • Silicon Anode For A Rechargeable Battery
  • Semi-Solid Electrode Cell Having A Porous Current Collector And Methods Of Manufacture
  • Method For Producing Silicon Nanowires
  • Electrode For Power Storage Device And Power Storage Device
  • Semi-Solid Electrodes Having High Rate Capability
  • Silicon Clathrate Anodes For Lithium-Ion Batteries
  • Fade-Resistant High Capacity Electrodes For A Lithium-Ion Battery
  • Process For Producing Nano Graphene Reinforced Composite Particles For Lithium Battery Electrodes
  • Cvd-Free, Scalable Processes For The Production Of Silicon Micro- And Nanostructures
  • Method For Mass Production Of Silicon Nanowires And/Or Nanobelts, And Lithium Batteries And Anodes Using The Silicon Nanowires And/Or Nanobelts
  • Transition Metal Hydroxy-Anion Electrode Materials For Lithium-Ion Battery Cathodes
  • Process For Fabricating Nanowire Arrays
  • Modular Externally Accessible Batteries For An Aircraft
  • Method Of Preparing Bundle Type Silicon Nanorod Composite Through Electroless Etching Process Using Metal Ions And Anode Active Material For Lithium Secondary Cells Comprising The Same
  • Electrode For Battery And Method For Manufacturing Thereof
  • A Method For Mass Production Of Silicon Nanowires And/Or Nanobelts, And Lithium Batteries And Anodes Using The Silicon Nanowires And/Or Nanobelts
  • High Energy Lithium Ion Batteries With Particular Negative Electrode Compositions
  • Hybrid Energy Storage Device Production
  • Encapsulated Sulfur Cathodes For Rechargeable Lithium Batteries
  • Nanostructured Catalyst Supports
  • Method For Forming Silicon Film And Method For Manufacturing Power Storage Device
  • Hybrid Energy Storage Device Charging
  • Energy Storage Devices Including Support Filaments
  • Crystalline-Amorphous Nanowires For Battery Electrodes
  • Semi-Solid Electrodes Having High Rate Capability
  • Nanowire Battery Methods And Arrangements
  • Semi-Solid Electrodes Having High Rate Capability
  • High Capacity Electrodes
  • Negative Electrode For Non-Aqueous Secondary Battery, Non-Aqueous Secondary Battery, And Manufacturing Methods Thereof
  • Hybrid Energy Storage Devices Including Surface Effect Dominant Sites
  • Process For Fabricating Silicon Nanostructures
  • Electrode For Power Storage Device And Power Storage Device
  • High Capacity Electrodes
  • Negative Electrode Including Group 14 Metal/Metalloid Nanotubes, Lithium Battery Including The Negative Electrode, And Method Of Manufacturing The Negative Electrode
  • Methods For Making Battery Electrode Systems
  • Needle-Like Microstructure And Device Having Needle-Like Microstructure
  • Electrode Comprising Structured Silicon-Based Material
  • Method For Forming Semiconductor Region And Method For Manufacturing Power Storage Device
  • Nanoparticle Array With Tunable Nanoparticle Size And Separation
  • Power Storage Device And Method For Manufacturing The Same
  • Method For Manufacturing Graphene-Coated Object, Negative Electrode Of Secondary Battery Including Graphene-Coated Object, And Secondary Battery Including The Negative Electrode
  • Manufacturing Method Of Power Storage Device
  • Methods Of Fabricating Complex Two-Dimensional Conductive Silicides
  • High Capacity Electrodes
  • Flexible Electrical Devices And Methods
  • Method To Fabricate Micro And Nano Diamond Devices
  • Anode Battery Materials And Methods Of Making The Same
  • Power Storage Device
  • High Capacity Energy Storage
  • Hybrid Silicon And Carbon Clathrates
  • Selective Emitter Nanowire Array And Methods Of Making Same
  • Power Storage Device And Method For Manufacturing The Same
  • Electrode For Lithium Ion Batteries
  • Alloys Of Clathrate Allotropes For Rechargeable Batteries
  • Electrochemical Cells And Methods Of Manufacturing The Same
  • Method Of Fabricating Structured Particles Composed Of Silicon Or A Silicon-Based Material And Their Use In Lithium Rechargeable Batteries
  • Method For Manufacturing An Electrode For Lithium Ion Batteries
  • Clathrate Allotropes For Rechargeable Batteries
  • Method For Manufacturing Graphene-Coated Object, Negative Electrode Of Secondary Battery Including Graphene-Coated Object, And Secondary Battery Including The Negative Electrode
  • Method And Apparatus For Locating Items
  • High Capacity Electrodes
  • Silicon Oxide Based High Capacity Anode Materials For Lithium Ion Batteries
  • Selective Emitter Nanowire Array And Methods Of Making Same
  • Nanowire Battery Methods And Arrangements
  • Intermediate Layers For Electrode Fabrication
  • Method Of Producing Prelithiated Anodes For Secondary Lithium Ion Batteries
  • Stationary, Fluid Redox Electrode
  • Electrode For Power Storage Device And Power Storage Device
  • Energy Storage Devices
  • Method For Forming Positive Electrode For Lithium-Ion Secondary Battery
  • Hetero-Nanostructures For Solar Energy Conversions And Methods Of Fabricating Same
  • High Capacity Anode Materials For Lithium Ion Batteries
  • Nanostructured Silicon For Battery Anodes
  • Positive Electrode For Lithium Secondary Battery, Manufacturing Method Thereof, And Lithium Secondary Battery
  • Method Of Manufacturing A Planar Electrode With Large Surface Area
  • High Capacity Anode Materials For Lithium Ion Batteries
  • Method Of Forming An Array Of High Aspect Ratio Semiconductor Nanostructures
  • Modular Externally Accessible Batteries For An Aircraft
  • Electrochemical Slurry Compositions And Methods For Preparing The Same
  • Positive Electrode For Lithium Secondary Battery, Manufacturing Method Thereof, And Lithium Secondary Battery
  • Nanowires Made Of Novel Precursors And Method For The Production Thereof
  • Positive Electrode For Lithium Secondary Battery, Manufacturing Method Thereof, And Lithium Secondary Battery
  • Semi-Solid Electrodes Having High Rate Capability
  • Method
  • Clathrate Allotropes For Rechargeable Batteries
  • Silicon-Based Active Materials For Lithium Ion Batteries And Synthesis With Solution Processing
  • Porous And Non-Porous Nanostructures
  • Electrode
  • Power Storage Device And Method For Manufacturing The Same
  • Process For Fabricating Nanowire Arrays
  • Energy Storage Device And Manufacturing Method Thereof
  • Porous Silicon Based Anode Material Formed Using Metal Reduction
  • Nitrogen Substituted Carbon And Silicon Clathrates
  • Lithium-Ion Battery Anode Including Core-Shell Heterostructure Of Silicon Coated Vertically Aligned Carbon Nanofibers
  • High Capacity Electrodes
  • Method To Fabricate Micro And Nano Diamond Devices
  • Device And Electrode Having Nanoporous Graphite With Lithiated Sulfur For Advanced Rechargeable Batteries
  • Power Storage Device
  • Branched Nanostructures For Battery Electrodes
  • Sodium-Ion Secondary Battery
  • Hybrid Energy Storage Devices Including Support Filaments
  • Silicon Nanostructure Active Materials For Lithium Ion Batteries And Processes, Compositions, Components And Devices Related Thereto
  • Electrodes Including Support Filament With Collar Stop
  • Secondary Lithium Ion Battery Containing A Prelithiated Anode
  • Silicon Anode Lithium-Ion Battery
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nnano.2007.411

    DOI

    http://dx.doi.org/10.1038/nnano.2007.411

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032531480

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18654447


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Power Supplies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Failure Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lithium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microelectrodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotubes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chan", 
            "givenName": "Candace K.", 
            "id": "sg:person.0662517312.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662517312.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Hailin", 
            "id": "sg:person.01340650506.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340650506.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Environmental Energy Technologies Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Mail Stop 70R108B, Berkeley, California 94720, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Gao", 
            "id": "sg:person.01112740143.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112740143.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Electron Microscope Division, Hitachi High Technologies America, Inc., 5100 Franklin Drive, Pleasanton, California 94588, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McIlwrath", 
            "givenName": "Kevin", 
            "id": "sg:person.01040166346.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040166346.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Electron Microscope Division, Hitachi High Technologies America, Inc., 5100 Franklin Drive, Pleasanton, California 94588, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiao Feng", 
            "id": "sg:person.01207367447.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207367447.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huggins", 
            "givenName": "Robert A.", 
            "id": "sg:person.07673066745.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673066745.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Yi", 
            "id": "sg:person.014552666540.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0167-2738(96)00174-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001607940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2006.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235617", 
              "https://doi.org/10.1038/nnano.2006.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2006.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235617", 
              "https://doi.org/10.1038/nnano.2006.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200603309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005894097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2402112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006786042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008367118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4095(200106)13:11<816::aid-adma816>3.0.co;2-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017357583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2409862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018354950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2719644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025107593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026415921", 
              "https://doi.org/10.1038/30694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-7753(03)00132-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027337641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-7753(03)00132-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027337641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1739217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029933783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl035162i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031042328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl035162i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031042328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1596917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031337808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02375547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032368783", 
              "https://doi.org/10.1007/bf02375547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02375547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032368783", 
              "https://doi.org/10.1007/bf02375547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1058120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033718340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpowsour.2006.09.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034391435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200500157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038789862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200500157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038789862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1393483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040376525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-2738(96)00389-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042510929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200601232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044974628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2127495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048191769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1122716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050013891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35035045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051213847", 
              "https://doi.org/10.1038/35035045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35035045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051213847", 
              "https://doi.org/10.1038/35035045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b617519h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051580220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051933188", 
              "https://doi.org/10.1038/nature04574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051933188", 
              "https://doi.org/10.1038/nature04574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051933188", 
              "https://doi.org/10.1038/nature04574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.279.5348.208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062559246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1563094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063187783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1792242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063188714"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01", 
        "datePublishedReg": "2008-01-01", 
        "description": "There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nnano.2007.411", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037429", 
            "issn": [
              "1748-3387", 
              "1748-3395"
            ], 
            "name": "Nature Nanotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "High-performance lithium battery anodes using silicon nanowires", 
        "pagination": "31-35", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9af9d10d07dad0f201c97f0615b67624717f79facc740c9c8b269ec50071fdac"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18654447"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101283273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nnano.2007.411"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032531480"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nnano.2007.411", 
          "https://app.dimensions.ai/details/publication/pub.1032531480"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nnano.2007.411"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.411'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.411'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.411'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2007.411'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      67 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nnano.2007.411 schema:about N04852aab6ccc45c5a7376176ffb3e668
    2 Na5f6d3d826ef46dba83dd85ff25e32dd
    3 Nb236a1aec538464081a9b1d3dc997d25
    4 Nb256cc4f60014f50ba0ca0cd53b887e0
    5 Nb2d14081fc26432e9aa8556deb344766
    6 Ncc35ea16d0e64b05a4c4afb7f81e32af
    7 Ncd7a47011722427aabc0fdee89059afe
    8 Nd55af40f52484c9baece25938e9f1148
    9 Ndcb1f47be22d46b987af1f3bd8b48542
    10 Neb74322516a547069c5ccf9cd05a3120
    11 anzsrc-for:09
    12 anzsrc-for:0912
    13 schema:author N93f88604624e48a1a25637e493b60c1d
    14 schema:citation sg:pub.10.1007/bf02375547
    15 sg:pub.10.1038/30694
    16 sg:pub.10.1038/35035045
    17 sg:pub.10.1038/nature04574
    18 sg:pub.10.1038/nnano.2006.133
    19 https://doi.org/10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h
    20 https://doi.org/10.1002/1521-4095(200106)13:11<816::aid-adma816>3.0.co;2-p
    21 https://doi.org/10.1002/adfm.200500157
    22 https://doi.org/10.1002/adma.200601232
    23 https://doi.org/10.1002/anie.200603309
    24 https://doi.org/10.1016/0167-2738(96)00174-9
    25 https://doi.org/10.1016/j.jpowsour.2006.09.084
    26 https://doi.org/10.1016/s0167-2738(96)00389-x
    27 https://doi.org/10.1016/s0378-7753(03)00132-0
    28 https://doi.org/10.1021/nl035162i
    29 https://doi.org/10.1039/b617519h
    30 https://doi.org/10.1126/science.1058120
    31 https://doi.org/10.1126/science.1122716
    32 https://doi.org/10.1126/science.279.5348.208
    33 https://doi.org/10.1149/1.1393483
    34 https://doi.org/10.1149/1.1563094
    35 https://doi.org/10.1149/1.1596917
    36 https://doi.org/10.1149/1.1739217
    37 https://doi.org/10.1149/1.1792242
    38 https://doi.org/10.1149/1.2127495
    39 https://doi.org/10.1149/1.2402112
    40 https://doi.org/10.1149/1.2409862
    41 https://doi.org/10.1149/1.2719644
    42 schema:datePublished 2008-01
    43 schema:datePublishedReg 2008-01-01
    44 schema:description There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N3bd58ef171a140589d598d2dfc2f2fff
    49 Ne8b2e595f34e46f89a791c9b73d1a225
    50 sg:journal.1037429
    51 schema:name High-performance lithium battery anodes using silicon nanowires
    52 schema:pagination 31-35
    53 schema:productId N22fc5676c73c46db8bf7a609e2bf0cb5
    54 N77c52792432f492d9afb075b4d85ff86
    55 N89db5616dd3845bf9d6274e4a39d2b16
    56 Nc2c4f03922f14542a30b229257612aba
    57 Nf612ce5db21444849e3c64964bbb62e3
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032531480
    59 https://doi.org/10.1038/nnano.2007.411
    60 schema:sdDatePublished 2019-04-10T18:08
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N278e6f5694514679b26567830711d59d
    63 schema:url http://www.nature.com/articles/nnano.2007.411
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0260dcba8bb142c980d13ea79473a34a rdf:first sg:person.014552666540.04
    68 rdf:rest rdf:nil
    69 N04852aab6ccc45c5a7376176ffb3e668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Equipment Failure Analysis
    71 rdf:type schema:DefinedTerm
    72 N1340d46cb2b640febf9bbf93d03b2d0b rdf:first sg:person.01040166346.05
    73 rdf:rest N5c49f8a7f05f487fbc7bb5986efd9ac3
    74 N22fc5676c73c46db8bf7a609e2bf0cb5 schema:name nlm_unique_id
    75 schema:value 101283273
    76 rdf:type schema:PropertyValue
    77 N278e6f5694514679b26567830711d59d schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N3bd58ef171a140589d598d2dfc2f2fff schema:volumeNumber 3
    80 rdf:type schema:PublicationVolume
    81 N497db5b0f76a494db58a823b88a356e6 rdf:first sg:person.07673066745.64
    82 rdf:rest N0260dcba8bb142c980d13ea79473a34a
    83 N5c49f8a7f05f487fbc7bb5986efd9ac3 rdf:first sg:person.01207367447.34
    84 rdf:rest N497db5b0f76a494db58a823b88a356e6
    85 N77c52792432f492d9afb075b4d85ff86 schema:name dimensions_id
    86 schema:value pub.1032531480
    87 rdf:type schema:PropertyValue
    88 N89db5616dd3845bf9d6274e4a39d2b16 schema:name pubmed_id
    89 schema:value 18654447
    90 rdf:type schema:PropertyValue
    91 N93f88604624e48a1a25637e493b60c1d rdf:first sg:person.0662517312.35
    92 rdf:rest Nae54ccf05be049e9a19debd101b9cf6a
    93 Na5f6d3d826ef46dba83dd85ff25e32dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Energy Transfer
    95 rdf:type schema:DefinedTerm
    96 Nae54ccf05be049e9a19debd101b9cf6a rdf:first sg:person.01340650506.94
    97 rdf:rest Neffd172d42794108a8246aca2de1ad94
    98 Nb236a1aec538464081a9b1d3dc997d25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Lithium
    100 rdf:type schema:DefinedTerm
    101 Nb256cc4f60014f50ba0ca0cd53b887e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Nanotubes
    103 rdf:type schema:DefinedTerm
    104 Nb2d14081fc26432e9aa8556deb344766 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Silicon
    106 rdf:type schema:DefinedTerm
    107 Nc2c4f03922f14542a30b229257612aba schema:name doi
    108 schema:value 10.1038/nnano.2007.411
    109 rdf:type schema:PropertyValue
    110 Ncc35ea16d0e64b05a4c4afb7f81e32af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Electric Power Supplies
    112 rdf:type schema:DefinedTerm
    113 Ncd7a47011722427aabc0fdee89059afe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Equipment Design
    115 rdf:type schema:DefinedTerm
    116 Nd55af40f52484c9baece25938e9f1148 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Nanotechnology
    118 rdf:type schema:DefinedTerm
    119 Ndcb1f47be22d46b987af1f3bd8b48542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Electrodes
    121 rdf:type schema:DefinedTerm
    122 Ne8b2e595f34e46f89a791c9b73d1a225 schema:issueNumber 1
    123 rdf:type schema:PublicationIssue
    124 Neb74322516a547069c5ccf9cd05a3120 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Microelectrodes
    126 rdf:type schema:DefinedTerm
    127 Nede5770c694e433fb2414824f7817729 schema:name Electron Microscope Division, Hitachi High Technologies America, Inc., 5100 Franklin Drive, Pleasanton, California 94588, USA
    128 rdf:type schema:Organization
    129 Neffd172d42794108a8246aca2de1ad94 rdf:first sg:person.01112740143.55
    130 rdf:rest N1340d46cb2b640febf9bbf93d03b2d0b
    131 Nf240643ba3bd490e9c2638a59ca75b76 schema:name Electron Microscope Division, Hitachi High Technologies America, Inc., 5100 Franklin Drive, Pleasanton, California 94588, USA
    132 rdf:type schema:Organization
    133 Nf612ce5db21444849e3c64964bbb62e3 schema:name readcube_id
    134 schema:value 9af9d10d07dad0f201c97f0615b67624717f79facc740c9c8b269ec50071fdac
    135 rdf:type schema:PropertyValue
    136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Engineering
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Materials Engineering
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1037429 schema:issn 1748-3387
    143 1748-3395
    144 schema:name Nature Nanotechnology
    145 rdf:type schema:Periodical
    146 sg:person.01040166346.05 schema:affiliation Nf240643ba3bd490e9c2638a59ca75b76
    147 schema:familyName McIlwrath
    148 schema:givenName Kevin
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040166346.05
    150 rdf:type schema:Person
    151 sg:person.01112740143.55 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
    152 schema:familyName Liu
    153 schema:givenName Gao
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112740143.55
    155 rdf:type schema:Person
    156 sg:person.01207367447.34 schema:affiliation Nede5770c694e433fb2414824f7817729
    157 schema:familyName Zhang
    158 schema:givenName Xiao Feng
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207367447.34
    160 rdf:type schema:Person
    161 sg:person.01340650506.94 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    162 schema:familyName Peng
    163 schema:givenName Hailin
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340650506.94
    165 rdf:type schema:Person
    166 sg:person.014552666540.04 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    167 schema:familyName Cui
    168 schema:givenName Yi
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552666540.04
    170 rdf:type schema:Person
    171 sg:person.0662517312.35 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    172 schema:familyName Chan
    173 schema:givenName Candace K.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662517312.35
    175 rdf:type schema:Person
    176 sg:person.07673066745.64 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    177 schema:familyName Huggins
    178 schema:givenName Robert A.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673066745.64
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf02375547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032368783
    182 https://doi.org/10.1007/bf02375547
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/30694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026415921
    185 https://doi.org/10.1038/30694
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/35035045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051213847
    188 https://doi.org/10.1038/35035045
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature04574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051933188
    191 https://doi.org/10.1038/nature04574
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nnano.2006.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004235617
    194 https://doi.org/10.1038/nnano.2006.133
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1008367118
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1002/1521-4095(200106)13:11<816::aid-adma816>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1017357583
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1002/adfm.200500157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789862
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1002/adma.200601232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044974628
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/anie.200603309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005894097
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/0167-2738(96)00174-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001607940
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.jpowsour.2006.09.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034391435
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/s0167-2738(96)00389-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042510929
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0378-7753(03)00132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027337641
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/nl035162i schema:sameAs https://app.dimensions.ai/details/publication/pub.1031042328
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1039/b617519h schema:sameAs https://app.dimensions.ai/details/publication/pub.1051580220
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1126/science.1058120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033718340
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1126/science.1122716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013891
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1126/science.279.5348.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559246
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1149/1.1393483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040376525
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1149/1.1563094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187783
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1149/1.1596917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031337808
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1149/1.1739217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029933783
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1149/1.1792242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063188714
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1149/1.2127495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048191769
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1149/1.2402112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006786042
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1149/1.2409862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018354950
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1149/1.2719644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107593
    241 rdf:type schema:CreativeWork
    242 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    243 schema:name Department of Chemistry, Stanford University, Stanford, California 94305, USA
    244 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
    245 rdf:type schema:Organization
    246 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
    247 schema:name Environmental Energy Technologies Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Mail Stop 70R108B, Berkeley, California 94720, USA
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...