Carbon nanotube superconducting quantum interference device View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10

AUTHORS

J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux

ABSTRACT

A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the 'on' or 'off' state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled pi-junctions; that is, the sign of the current-phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions. More... »

PAGES

53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nnano.2006.54

DOI

http://dx.doi.org/10.1038/nnano.2006.54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033005599

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18654142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interferometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Probe Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes, Carbon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre d\u2019\u00c9laboration de Mat\u00e9riaux et d\u2019Etudes Structurales", 
          "id": "https://www.grid.ac/institutes/grid.462730.4", 
          "name": [
            "Centre d'Elaboration des Mat\u00e9riaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cleuziou", 
        "givenName": "J.-P.", 
        "id": "sg:person.0600707277.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600707277.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire L. N\u00e9el, LLN-CNRS, associ\u00e9 \u00e0 l'UJF, BP 166, 38042 Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wernsdorfer", 
        "givenName": "W.", 
        "id": "sg:person.01065057430.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre de Recherches sur les Tr\u00e8s Basses Temp\u00e9ratures, CRTBT-CNRS, associ\u00e9 \u00e0 l'UJF, BP 166, 38042 Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchiat", 
        "givenName": "V.", 
        "id": "sg:person.01342352527.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342352527.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre d\u2019\u00c9laboration de Mat\u00e9riaux et d\u2019Etudes Structurales", 
          "id": "https://www.grid.ac/institutes/grid.462730.4", 
          "name": [
            "Centre d'Elaboration des Mat\u00e9riaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ondar\u00e7uhu", 
        "givenName": "T.", 
        "id": "sg:person.01120325226.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120325226.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre d\u2019\u00c9laboration de Mat\u00e9riaux et d\u2019Etudes Structurales", 
          "id": "https://www.grid.ac/institutes/grid.462730.4", 
          "name": [
            "Centre d'Elaboration des Mat\u00e9riaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monthioux", 
        "givenName": "M.", 
        "id": "sg:person.01322750321.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322750321.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.89.137007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001924692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.137007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001924692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003703411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003703411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007355361", 
          "https://doi.org/10.1038/386474a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034139u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009668868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034139u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009668868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010997800", 
          "https://doi.org/10.1038/16204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.256801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015445586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.256801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015445586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.116803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020012409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.116803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020012409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.047002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020283228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.047002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020283228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.020502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.020502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.r6137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027676073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.r6137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027676073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1414304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029797729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032124293", 
          "https://doi.org/10.1038/nature01797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470141786.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034665498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.046803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036930649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.046803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036930649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037312998", 
          "https://doi.org/10.1038/nature00791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037312998", 
          "https://doi.org/10.1038/nature00791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.233301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037362432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.233301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037362432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.057005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.057005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.207002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.207002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.037901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043969916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.037901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043969916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048111958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048111958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/14/1/318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051227383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052356137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052356137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1572970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057721720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1789914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057822250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2058-7058/14/1/28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059185690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.12.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.12.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.027005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.027005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.403004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061223954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1081045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.239.4843.992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062535382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5274.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5411.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1999-00480-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1101840889", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the 'on' or 'off' state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled pi-junctions; that is, the sign of the current-phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nnano.2006.54", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037429", 
        "issn": [
          "1748-3387", 
          "1748-3395"
        ], 
        "name": "Nature Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Carbon nanotube superconducting quantum interference device", 
    "pagination": "53", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d3beca487309ae1e28f394ee89c0c0dc85e07b557f97347a0a36cefb48b9a99"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18654142"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101283273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nnano.2006.54"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033005599"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nnano.2006.54", 
      "https://app.dimensions.ai/details/publication/pub.1033005599"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nnano.2006.54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nnano.2006.54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nnano.2006.54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nnano.2006.54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nnano.2006.54'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      81 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nnano.2006.54 schema:about N0d1aacaf585a4de5a729ebe427671a28
2 N2472849243f347838effca8996c2b865
3 N4221278579cd48959b602c14ad7d6077
4 N51e452eb65124869858925d249c140b9
5 N5c4f0a6ad31748cda3cc77c59a303505
6 N9634c0cee80f4fe784112ab429120696
7 anzsrc-for:02
8 anzsrc-for:0202
9 schema:author N757c27d8b5694576b62eec8f4460108a
10 schema:citation sg:pub.10.1038/16204
11 sg:pub.10.1038/19464
12 sg:pub.10.1038/34373
13 sg:pub.10.1038/35042545
14 sg:pub.10.1038/386474a0
15 sg:pub.10.1038/nature00791
16 sg:pub.10.1038/nature01797
17 sg:pub.10.1038/nature04550
18 https://app.dimensions.ai/details/publication/pub.1101840889
19 https://doi.org/10.1002/9780470141786.ch3
20 https://doi.org/10.1016/0031-9163(62)91369-0
21 https://doi.org/10.1021/nl034139u
22 https://doi.org/10.1063/1.125627
23 https://doi.org/10.1063/1.1414304
24 https://doi.org/10.1063/1.1572970
25 https://doi.org/10.1063/1.1789914
26 https://doi.org/10.1088/0957-4484/14/1/318
27 https://doi.org/10.1088/2058-7058/14/1/28
28 https://doi.org/10.1103/physrevb.55.r6137
29 https://doi.org/10.1103/physrevb.64.233301
30 https://doi.org/10.1103/physrevb.65.165327
31 https://doi.org/10.1103/physrevb.70.020502
32 https://doi.org/10.1103/physrevlett.12.159
33 https://doi.org/10.1103/physrevlett.72.2458
34 https://doi.org/10.1103/physrevlett.77.3435
35 https://doi.org/10.1103/physrevlett.79.4014
36 https://doi.org/10.1103/physrevlett.86.4676
37 https://doi.org/10.1103/physrevlett.88.126801
38 https://doi.org/10.1103/physrevlett.89.037901
39 https://doi.org/10.1103/physrevlett.89.046803
40 https://doi.org/10.1103/physrevlett.89.137007
41 https://doi.org/10.1103/physrevlett.89.256801
42 https://doi.org/10.1103/physrevlett.90.167001
43 https://doi.org/10.1103/physrevlett.91.057005
44 https://doi.org/10.1103/physrevlett.91.116803
45 https://doi.org/10.1103/physrevlett.93.047002
46 https://doi.org/10.1103/physrevlett.93.207002
47 https://doi.org/10.1103/physrevlett.94.027005
48 https://doi.org/10.1103/physrevlett.95.097001
49 https://doi.org/10.1103/physrevlett.96.207003
50 https://doi.org/10.1109/77.403004
51 https://doi.org/10.1126/science.1081045
52 https://doi.org/10.1126/science.239.4843.992
53 https://doi.org/10.1126/science.273.5274.483
54 https://doi.org/10.1126/science.284.5411.133
55 https://doi.org/10.1209/epl/i1999-00480-8
56 schema:datePublished 2006-10
57 schema:datePublishedReg 2006-10-01
58 schema:description A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the 'on' or 'off' state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled pi-junctions; that is, the sign of the current-phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf N2e4c1d55b6334681bd2ad540e9367a84
63 Nd398e9dd6bcd4ec3a76cf05610a24acb
64 sg:journal.1037429
65 schema:name Carbon nanotube superconducting quantum interference device
66 schema:pagination 53
67 schema:productId N4dc8e7eb37974873aac8e01b389ef581
68 N83c7136a206e41b0a2357bd5c8bd818e
69 Na8c1ea0ad211488bbbade7d0ec440325
70 Nac58cfdaee0849e5b5a9331639911d01
71 Ncde81cb5d4084159901ede9d55243fb9
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005599
73 https://doi.org/10.1038/nnano.2006.54
74 schema:sdDatePublished 2019-04-11T11:53
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N42da561ea6a44b0aa93b47a43daacd8a
77 schema:url https://www.nature.com/articles/nnano.2006.54
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0d1aacaf585a4de5a729ebe427671a28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Nanotubes, Carbon
83 rdf:type schema:DefinedTerm
84 N10ec457cbf5647ab8c74fc9736ccb6f1 rdf:first sg:person.01342352527.45
85 rdf:rest N1fecbcd7b95c45bfb67fd6506e447c87
86 N1d3d2bf376a446e686c431a29ad8812d rdf:first sg:person.01065057430.25
87 rdf:rest N10ec457cbf5647ab8c74fc9736ccb6f1
88 N1fecbcd7b95c45bfb67fd6506e447c87 rdf:first sg:person.01120325226.18
89 rdf:rest Nf83220abcc5a4f879f57f54fa50cdc59
90 N2472849243f347838effca8996c2b865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Nanotechnology
92 rdf:type schema:DefinedTerm
93 N2956421ca02d4aba91f82a269ced8f7c schema:name Laboratoire L. Néel, LLN-CNRS, associé à l'UJF, BP 166, 38042 Grenoble Cedex 9, France
94 rdf:type schema:Organization
95 N2e4c1d55b6334681bd2ad540e9367a84 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N4221278579cd48959b602c14ad7d6077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Interferometry
99 rdf:type schema:DefinedTerm
100 N42da561ea6a44b0aa93b47a43daacd8a schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N4dc8e7eb37974873aac8e01b389ef581 schema:name pubmed_id
103 schema:value 18654142
104 rdf:type schema:PropertyValue
105 N51e452eb65124869858925d249c140b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Magnetics
107 rdf:type schema:DefinedTerm
108 N5c4f0a6ad31748cda3cc77c59a303505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Molecular Probe Techniques
110 rdf:type schema:DefinedTerm
111 N757c27d8b5694576b62eec8f4460108a rdf:first sg:person.0600707277.40
112 rdf:rest N1d3d2bf376a446e686c431a29ad8812d
113 N83c7136a206e41b0a2357bd5c8bd818e schema:name doi
114 schema:value 10.1038/nnano.2006.54
115 rdf:type schema:PropertyValue
116 N9634c0cee80f4fe784112ab429120696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Equipment Design
118 rdf:type schema:DefinedTerm
119 Na8c1ea0ad211488bbbade7d0ec440325 schema:name readcube_id
120 schema:value 9d3beca487309ae1e28f394ee89c0c0dc85e07b557f97347a0a36cefb48b9a99
121 rdf:type schema:PropertyValue
122 Nac58cfdaee0849e5b5a9331639911d01 schema:name dimensions_id
123 schema:value pub.1033005599
124 rdf:type schema:PropertyValue
125 Ncc616d3437a44ac8af15c795639936b0 schema:name Centre de Recherches sur les Très Basses Températures, CRTBT-CNRS, associé à l'UJF, BP 166, 38042 Grenoble Cedex 9, France
126 rdf:type schema:Organization
127 Ncde81cb5d4084159901ede9d55243fb9 schema:name nlm_unique_id
128 schema:value 101283273
129 rdf:type schema:PropertyValue
130 Nd398e9dd6bcd4ec3a76cf05610a24acb schema:volumeNumber 1
131 rdf:type schema:PublicationVolume
132 Nf83220abcc5a4f879f57f54fa50cdc59 rdf:first sg:person.01322750321.60
133 rdf:rest rdf:nil
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
138 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
139 rdf:type schema:DefinedTerm
140 sg:journal.1037429 schema:issn 1748-3387
141 1748-3395
142 schema:name Nature Nanotechnology
143 rdf:type schema:Periodical
144 sg:person.01065057430.25 schema:affiliation N2956421ca02d4aba91f82a269ced8f7c
145 schema:familyName Wernsdorfer
146 schema:givenName W.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25
148 rdf:type schema:Person
149 sg:person.01120325226.18 schema:affiliation https://www.grid.ac/institutes/grid.462730.4
150 schema:familyName Ondarçuhu
151 schema:givenName T.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120325226.18
153 rdf:type schema:Person
154 sg:person.01322750321.60 schema:affiliation https://www.grid.ac/institutes/grid.462730.4
155 schema:familyName Monthioux
156 schema:givenName M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322750321.60
158 rdf:type schema:Person
159 sg:person.01342352527.45 schema:affiliation Ncc616d3437a44ac8af15c795639936b0
160 schema:familyName Bouchiat
161 schema:givenName V.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342352527.45
163 rdf:type schema:Person
164 sg:person.0600707277.40 schema:affiliation https://www.grid.ac/institutes/grid.462730.4
165 schema:familyName Cleuziou
166 schema:givenName J.-P.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600707277.40
168 rdf:type schema:Person
169 sg:pub.10.1038/16204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010997800
170 https://doi.org/10.1038/16204
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/19464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176436
173 https://doi.org/10.1038/19464
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
176 https://doi.org/10.1038/34373
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/35042545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
179 https://doi.org/10.1038/35042545
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/386474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355361
182 https://doi.org/10.1038/386474a0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature00791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037312998
185 https://doi.org/10.1038/nature00791
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature01797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124293
188 https://doi.org/10.1038/nature01797
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature04550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909017
191 https://doi.org/10.1038/nature04550
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1101840889 schema:CreativeWork
194 https://doi.org/10.1002/9780470141786.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034665498
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0031-9163(62)91369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017917
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/nl034139u schema:sameAs https://app.dimensions.ai/details/publication/pub.1009668868
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.125627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689742
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.1414304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797729
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.1572970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057721720
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.1789914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057822250
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/0957-4484/14/1/318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051227383
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1088/2058-7058/14/1/28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059185690
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.55.r6137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676073
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.64.233301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037362432
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.65.165327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734506
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.70.020502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079864
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.12.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767127
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.77.3435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814096
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.79.4014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816229
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.86.4676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048111958
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.88.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824645
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.89.037901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043969916
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.89.046803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036930649
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.89.137007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001924692
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.89.256801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015445586
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.90.167001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826611
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.91.057005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188420
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.91.116803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020012409
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.93.047002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020283228
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.93.207002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041493526
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevlett.94.027005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829713
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevlett.95.097001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003703411
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.96.207003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052356137
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1109/77.403004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061223954
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1081045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447811
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.239.4843.992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062535382
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.273.5274.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553701
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.284.5411.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564714
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1209/epl/i1999-00480-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235608
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.462730.4 schema:alternateName Centre d’Élaboration de Matériaux et d’Etudes Structurales
269 schema:name Centre d'Elaboration des Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...