Ontology type: schema:ScholarlyArticle Open Access: True
2011-08
AUTHORSBrian J Fischer, José Luis Peña
ABSTRACTThe owl captures prey using sound localization. In the classical model, the owl infers sound direction from the position of greatest activity in a brain map of auditory space. However, this model fails to describe the actual behavior. Although owls accurately localize sources near the center of gaze, they systematically underestimate peripheral source directions. We found that this behavior is predicted by statistical inference, formulated as a Bayesian model that emphasizes central directions. We propose that there is a bias in the neural coding of auditory space, which, at the expense of inducing errors in the periphery, achieves high behavioral accuracy at the ethologically relevant range. We found that the owl's map of auditory space decoded by a population vector is consistent with the behavioral model. Thus, a probabilistic model describes both how the map of auditory space supports behavior and why this representation is optimal. More... »
PAGES1061
http://scigraph.springernature.com/pub.10.1038/nn.2872
DOIhttp://dx.doi.org/10.1038/nn.2872
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036027916
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/21725311
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Acoustic Stimulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bayes Theorem",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Behavior, Animal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain Mapping",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Likelihood Functions",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neurons",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sound Localization",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Strigiformes",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Neurosciences Cognitives",
"id": "https://www.grid.ac/institutes/grid.462870.f",
"name": [
"Group for Neural Theory, D\u00e9partement d'Etudes Cognitives, Ecole Normale Sup\u00e9rieure, Paris, France.",
"Laboratoire de Neurosciences Cognitives, INSERM U960, Paris, France."
],
"type": "Organization"
},
"familyName": "Fischer",
"givenName": "Brian J",
"id": "sg:person.01230470433.79",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230470433.79"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Albert Einstein College of Medicine",
"id": "https://www.grid.ac/institutes/grid.251993.5",
"name": [
"Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA."
],
"type": "Organization"
},
"familyName": "Pe\u00f1a",
"givenName": "Jos\u00e9 Luis",
"id": "sg:person.01130537730.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130537730.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1152/jn.00628.2009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000798395"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1152/jn.00954.2002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001841983"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02768",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005201330",
"https://doi.org/10.1038/nature02768"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02768",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005201330",
"https://doi.org/10.1038/nature02768"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1152/jn.00400.2009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007086334"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0896-6273(00)80595-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012350963"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.0220-06.2006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020104099"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn0602-858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023252017",
"https://doi.org/10.1038/nn0602-858"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn0602-858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023252017",
"https://doi.org/10.1038/nn0602-858"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neuroscience.2007.12.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027119486"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.neuro.26.041002.131123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029848852"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.2533-05.2005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030509586"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00663105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033821927",
"https://doi.org/10.1007/bf00663105"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00663105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033821927",
"https://doi.org/10.1007/bf00663105"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.1969-08.2008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038060873"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00962720",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041421686",
"https://doi.org/10.1007/bf00962720"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00422-008-0215-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047148434",
"https://doi.org/10.1007/s00422-008-0215-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0007721",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047607529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/h0061495",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047620573"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0378-5955(98)00014-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048512074"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/345434a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049596847",
"https://doi.org/10.1038/345434a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.bbr.2004.04.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050035341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0010497",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050995623"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053079541",
"https://doi.org/10.1038/nature04485"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053079541",
"https://doi.org/10.1038/nature04485"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053079541",
"https://doi.org/10.1038/nature04485"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn1669",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053234906",
"https://doi.org/10.1038/nn1669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1121/1.2139619",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062309607"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1121/1.392109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062343401"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.644324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062637614"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.10-10-03227.1990",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1078482849"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1078996115",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.09-07-02591.1989",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079306572"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082125865",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.02-09-01177.1982",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1082160993"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.18-06-02147.1998",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083218767"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-08",
"datePublishedReg": "2011-08-01",
"description": "The owl captures prey using sound localization. In the classical model, the owl infers sound direction from the position of greatest activity in a brain map of auditory space. However, this model fails to describe the actual behavior. Although owls accurately localize sources near the center of gaze, they systematically underestimate peripheral source directions. We found that this behavior is predicted by statistical inference, formulated as a Bayesian model that emphasizes central directions. We propose that there is a bias in the neural coding of auditory space, which, at the expense of inducing errors in the periphery, achieves high behavioral accuracy at the ethologically relevant range. We found that the owl's map of auditory space decoded by a population vector is consistent with the behavioral model. Thus, a probabilistic model describes both how the map of auditory space supports behavior and why this representation is optimal.",
"genre": "research_article",
"id": "sg:pub.10.1038/nn.2872",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2488950",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1118362",
"issn": [
"1097-6256",
"1546-1726"
],
"name": "Nature Neuroscience",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "14"
}
],
"name": "Owl's behavior and neural representation predicted by Bayesian inference",
"pagination": "1061",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ab9f827682a8ba34cf711e04ccf1736e7ad55913deb4103b8a31ebaa88e596af"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"21725311"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"9809671"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nn.2872"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036027916"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nn.2872",
"https://app.dimensions.ai/details/publication/pub.1036027916"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T00:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000436.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/nn.2872"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nn.2872'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nn.2872'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nn.2872'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nn.2872'
This table displays all metadata directly associated to this object as RDF triples.
225 TRIPLES
21 PREDICATES
71 URIs
32 LITERALS
20 BLANK NODES