Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

Michael J Rust, Mark Bates, Xiaowei Zhuang

ABSTRACT

We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution. More... »

PAGES

793-796

References to SciGraph publications

Journal

TITLE

Nature Methods

ISSUE

10

VOLUME

3

Author Affiliations

Related Patents

  • Sub-Diffraction Limit Image Resolution In Three Dimensions
  • Method And System For Stimulated Raman Microscopy Beyond The Diffraction Limit
  • Laser Or Amplifier Optical Device Pumped Or Seeded With Nonlinearly Generated Light
  • Spatial Resolution Imaging Of Structure Of Interest In Specimen Involves Marking Specimen Structure, Imaging The Specimen, Exposing The Specimen To Light, Registering The Fluorescent Light And Determining Position Of Molecules Of Substance
  • Superresolution Optical Fluctuation Imaging (Sofi)
  • Methods And Compositions Relating To Super-Resolution Imaging And Modification
  • Light-Microscopic Method Of Localization Microscopy For Localizing Point Objects
  • Microscope Table With Pivotable Lens Holder
  • Superresolution Optical Fluctuation Imaging (Sofi)
  • A Method And Device For Light Microscopy Image Of A Sample Structure
  • Method And Apparatus For The Microscopic Imaging Of A Sample Structure
  • Light-Field Pixel For Detecting A Wavefront Based On A First Intensity Normalized By A Second Intensity
  • High-Resolution Microscope And Method For Determining The Two- Or Three-Dimensional Positions Of Objects
  • Fluorescence Microscopy Methods And Apparatus
  • Laser Or Amplifier Optical Device Seeded With Nonlinearly Generated Light
  • Super Resolution Optofluidic Microscopes For 2d And 3d Imaging
  • Systems And Methods For 3-Dimensional Interferometric Microscopy
  • Fluorogenic Compounds Converted To Fluorophores By Photochemical Or Chemical Means And Their Use In Biological Systems
  • Various Applications Of High-Resolution Fluorescence - Based Microscopy (Resolft / Sted Methods, Inter Alia,), Such As, For Example, Fluorescence - Based Nanostructuring
  • Method For Detecting Cells
  • Method And Device To Achieve Spatially Confined Photointeraction At The Focal Volume Of A Microscope
  • Sub-Diffraction Limit Image Resolution And Other Imaging Techniques
  • Light Microscopy Process For The Localization Of Dot Objects
  • Optical Mapping Of Genomic Dna
  • Device And Method For Microscopic Image Acquisition Of A Sample Structure
  • Sub-Diffraction Limit Image Resolution In Three Dimensions
  • Specimen Holder For A Microscope
  • Method And Light Microscopy Device For The Graphic Representation Of A Sample
  • Focal Plane Adjustment By Back Propagation In Optofluidic Microscope Devices
  • Molecular Indicia Of Cellular Constituents And Resolving The Same By Super-Resolution Technologies In Single Cells
  • Nucleic Acid Nanostructure Barcode Probes
  • Microscopic Device And Microscopic Method For The Three-Dimensional Localization Of Point-Like Objects
  • Microscopic Device And Microscopic Method For The Three-Dimensional Localization Of Punctiform Objects
  • Microscope Stage With Pivotable Objective Holder
  • Wavefront Imaging Sensor
  • Improvements Relating To Fluorescence Microscopy
  • Device And Method For The Adjusted Mounting Of A Microscope Stage To A Microscope Stand
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth929

    DOI

    http://dx.doi.org/10.1038/nmeth929

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018882864

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16896339


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stochastic Processes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rust", 
            "givenName": "Michael J", 
            "id": "sg:person.01161257412.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161257412.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Division of Engineering and Applied Sciences, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bates", 
            "givenName": "Mark", 
            "id": "sg:person.01350467504.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350467504.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.", 
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.", 
                "Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhuang", 
            "givenName": "Xiaowei", 
            "id": "sg:person.0625063404.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625063404.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.0401638101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001481760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0508047103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005543452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506010102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012403980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1978-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016486170", 
              "https://doi.org/10.1007/978-94-011-1978-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1978-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016486170", 
              "https://doi.org/10.1007/978-94-011-1978-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0406877102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030344502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0406877102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030344502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034655204", 
              "https://doi.org/10.1038/nbt899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034655204", 
              "https://doi.org/10.1038/nbt899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0402155101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036611280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/331450a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037683349", 
              "https://doi.org/10.1038/331450a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.108101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038068501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.108101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038068501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039830931", 
              "https://doi.org/10.1038/nbt895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039830931", 
              "https://doi.org/10.1038/nbt895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(98)00673-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041404866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044686x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045186639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044686x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045186639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(02)75618-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049070026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1084398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051353709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.13.007052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065244554"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-10", 
        "datePublishedReg": "2006-10-01", 
        "description": "We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmeth929", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2517988", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)", 
        "pagination": "793-796", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "59f898729756927aac6b2ef2b44420895183af56ced05ba09d0ba163d1441c26"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16896339"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101215604"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth929"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018882864"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth929", 
          "https://app.dimensions.ai/details/publication/pub.1018882864"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmeth929"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth929'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth929'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth929'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth929'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      50 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth929 schema:about N170c779aee104b3f853098100bd8f8f1
    2 N2951e966ee8e42ff906ab15c2f418845
    3 N38fee22e26ba4a0282cbf584b934dfa0
    4 N8182a3ad59bb4941a04e6c0fb70cf2cd
    5 Nda77c68ffff945dda22b5c754cfb587c
    6 Ndff73408380f4f0ea4c7dd39922e90b7
    7 anzsrc-for:02
    8 anzsrc-for:0299
    9 schema:author N16526e2e41a848ba8f22b99bef79d018
    10 schema:citation sg:pub.10.1007/978-94-011-1978-8
    11 sg:pub.10.1038/331450a0
    12 sg:pub.10.1038/nbt895
    13 sg:pub.10.1038/nbt899
    14 https://doi.org/10.1016/s0006-3495(02)75618-x
    15 https://doi.org/10.1016/s0009-2614(98)00673-3
    16 https://doi.org/10.1021/ja044686x
    17 https://doi.org/10.1073/pnas.0401638101
    18 https://doi.org/10.1073/pnas.0402155101
    19 https://doi.org/10.1073/pnas.0406877102
    20 https://doi.org/10.1073/pnas.0506010102
    21 https://doi.org/10.1073/pnas.0508047103
    22 https://doi.org/10.1103/physrevlett.94.108101
    23 https://doi.org/10.1126/science.1084398
    24 https://doi.org/10.1364/opex.13.007052
    25 schema:datePublished 2006-10
    26 schema:datePublishedReg 2006-10-01
    27 schema:description We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N68bdea6061544a4e81b633fa2169e118
    32 N97363da68c1242a494e6d65a967c540f
    33 sg:journal.1033763
    34 schema:name Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
    35 schema:pagination 793-796
    36 schema:productId N48d887412f1f418b96d01058da053fb3
    37 N7192b08894d249d4a4446e0031c78922
    38 N79ac02138da042d18b3676a838006272
    39 Na9725376b57640bfb9807b93bdc6a1ff
    40 Ndd90aa18a084457883a778979976f635
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882864
    42 https://doi.org/10.1038/nmeth929
    43 schema:sdDatePublished 2019-04-11T12:27
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nf6e4af6b586b47c4a0aa9d132e121d76
    46 schema:url http://www.nature.com/articles/nmeth929
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N16526e2e41a848ba8f22b99bef79d018 rdf:first sg:person.01161257412.26
    51 rdf:rest N711b59e2fe3045adbd09ddd2b0e5333e
    52 N170c779aee104b3f853098100bd8f8f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    53 schema:name Fluorescent Dyes
    54 rdf:type schema:DefinedTerm
    55 N2951e966ee8e42ff906ab15c2f418845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    56 schema:name Image Interpretation, Computer-Assisted
    57 rdf:type schema:DefinedTerm
    58 N38fee22e26ba4a0282cbf584b934dfa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name DNA
    60 rdf:type schema:DefinedTerm
    61 N48d887412f1f418b96d01058da053fb3 schema:name nlm_unique_id
    62 schema:value 101215604
    63 rdf:type schema:PropertyValue
    64 N68bdea6061544a4e81b633fa2169e118 schema:issueNumber 10
    65 rdf:type schema:PublicationIssue
    66 N711b59e2fe3045adbd09ddd2b0e5333e rdf:first sg:person.01350467504.64
    67 rdf:rest Nab5b451893c84990925f05fa26d6decd
    68 N7192b08894d249d4a4446e0031c78922 schema:name doi
    69 schema:value 10.1038/nmeth929
    70 rdf:type schema:PropertyValue
    71 N79ac02138da042d18b3676a838006272 schema:name dimensions_id
    72 schema:value pub.1018882864
    73 rdf:type schema:PropertyValue
    74 N8182a3ad59bb4941a04e6c0fb70cf2cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Nanotechnology
    76 rdf:type schema:DefinedTerm
    77 N97363da68c1242a494e6d65a967c540f schema:volumeNumber 3
    78 rdf:type schema:PublicationVolume
    79 Na9725376b57640bfb9807b93bdc6a1ff schema:name readcube_id
    80 schema:value 59f898729756927aac6b2ef2b44420895183af56ced05ba09d0ba163d1441c26
    81 rdf:type schema:PropertyValue
    82 Nab5b451893c84990925f05fa26d6decd rdf:first sg:person.0625063404.43
    83 rdf:rest rdf:nil
    84 Nda77c68ffff945dda22b5c754cfb587c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Microscopy, Fluorescence
    86 rdf:type schema:DefinedTerm
    87 Ndd90aa18a084457883a778979976f635 schema:name pubmed_id
    88 schema:value 16896339
    89 rdf:type schema:PropertyValue
    90 Ndff73408380f4f0ea4c7dd39922e90b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Stochastic Processes
    92 rdf:type schema:DefinedTerm
    93 Nf6e4af6b586b47c4a0aa9d132e121d76 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Physical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Other Physical Sciences
    100 rdf:type schema:DefinedTerm
    101 sg:grant.2517988 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth929
    102 rdf:type schema:MonetaryGrant
    103 sg:journal.1033763 schema:issn 1548-7091
    104 1548-7105
    105 schema:name Nature Methods
    106 rdf:type schema:Periodical
    107 sg:person.01161257412.26 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    108 schema:familyName Rust
    109 schema:givenName Michael J
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161257412.26
    111 rdf:type schema:Person
    112 sg:person.01350467504.64 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    113 schema:familyName Bates
    114 schema:givenName Mark
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350467504.64
    116 rdf:type schema:Person
    117 sg:person.0625063404.43 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    118 schema:familyName Zhuang
    119 schema:givenName Xiaowei
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625063404.43
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-94-011-1978-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486170
    123 https://doi.org/10.1007/978-94-011-1978-8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/331450a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037683349
    126 https://doi.org/10.1038/331450a0
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/nbt895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039830931
    129 https://doi.org/10.1038/nbt895
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/nbt899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655204
    132 https://doi.org/10.1038/nbt899
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/s0006-3495(02)75618-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049070026
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s0009-2614(98)00673-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041404866
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/ja044686x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045186639
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1073/pnas.0401638101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001481760
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1073/pnas.0402155101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036611280
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1073/pnas.0406877102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030344502
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1073/pnas.0506010102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012403980
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1073/pnas.0508047103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005543452
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrevlett.94.108101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038068501
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1126/science.1084398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353709
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1364/opex.13.007052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065244554
    155 rdf:type schema:CreativeWork
    156 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    157 schema:name Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
    158 Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
    159 Division of Engineering and Applied Sciences, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
    160 Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...