Deep tissue two-photon microscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11-18

AUTHORS

Fritjof Helmchen, Winfried Denk

ABSTRACT

With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional—including confocal—fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue. More... »

PAGES

932-940

References to SciGraph publications

  • 2004-09-29. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo in NATURE METHODS
  • 2005-05-15. ATP mediates rapid microglial response to local brain injury in vivo in NATURE NEUROSCIENCE
  • 2003-07-22. "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 2000-04. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo in NATURE
  • 1999-01. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo in NATURE NEUROSCIENCE
  • 2002-12. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex in NATURE
  • 2003-05-17. ScanImage: Flexible software for operating laser scanning microscopes in BIOMEDICAL ENGINEERING ONLINE
  • 1999-08. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability in NATURE BIOTECHNOLOGY
  • 1997-01. In vivo dendritic calcium dynamics in neocortical pyramidal neurons in NATURE
  • 2003-10-31. Nonlinear magic: multiphoton microscopy in the biosciences in NATURE BIOTECHNOLOGY
  • 2000-12. A custom-made two-photon microscope and deconvolution system in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 2002-12. Long-term dendritic spine stability in the adult cortex in NATURE
  • 1999-11. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons in NATURE NEUROSCIENCE
  • 2001-10-22. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons in NATURE NEUROSCIENCE
  • 2005-01-19. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex in NATURE
  • 1995. Two-Photon Molecular Excitation in Laser-Scanning Microscopy in HANDBOOK OF BIOLOGICAL CONFOCAL MICROSCOPY
  • 2002-04. Dissecting tumour pathophysiology using intravital microscopy in NATURE REVIEWS CANCER
  • 2004-10-10. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches in NATURE NEUROSCIENCE
  • 2003-10-31. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms in NATURE BIOTECHNOLOGY
  • Journal

    TITLE

    Nature Methods

    ISSUE

    12

    VOLUME

    2

    Related Patents

  • System And Method Useful For Sarcomere Imaging Via Objective-Based Microscopy
  • Two-Photon Endoscopic Scanning Assembly For Inflammatory Disease Detection
  • Chemically Patterned Hydrogels, Manufacture And Use Thereof
  • Tissue And Cellular Imaging
  • Deep Tissue Focal Fluorescence Imaging With Digitally Time-Reversed Ultrasound-Encoded Light
  • Using Differential Time-Frequency Tissue-Response Spectroscopy To Evaluate Living Body Response To A Drug
  • Phasor Method To Fluorescence Lifetime Microscopy To Discriminate Metabolic State Of Cells In Living Tissue
  • Two-Photon Probe For Detecting Copper(Ii) Ion And Quantitative Estimation Of Copper(Ii) Ion In Human Tissue Using The Same
  • Digital Holographic Method Of Measuring Cellular Activity And Measuring Apparatus With Improved Stability
  • Controlling Pulses In Optical Microscopy
  • Method And System Of Using Intrinsic-Based Photosensing With High-Speed Line Scanning For Characterization Of Biological Thick Tissue Including Muscle
  • Two-Photon Fluorescent Probes For Imaging Of Total Sulfide In Live Cell And Tissue, And Quantitative Estimation Of Total Sulfide Concentration Using The Same
  • Optical Imaging Devices And Variable-Focus Lens Elements, And Methods For Using Them
  • Maximal-Aperture Reflecting Objective
  • Methods For Evaluating Ribonucleotide Sequences
  • Method And System For Emitting Light
  • Two-Photon Endoscopic Scanning Assembly For Inflammatory Disease Detection
  • Organotypic Drg-Peripheral Nerve Culture System
  • Noninvasive, Label-Free, In Vivo Flow Cytometry Using Speckle Correlation Technique
  • Adaptive Optics Microscopy With Phase Control Of Beamlets Of A Light Beam
  • Confocal Microscope, System And Method Therefor
  • System, Method And Computer-Accessible Medium For Multi-Plane Imaging Of Neural Circuits
  • System And Method Useful For Sarcomere Imaging Via Objective-Based Microscopy
  • Microscopy With Adaptive Optics
  • Systems And Methods For Measuring Translation Activity In Viable Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth818

    DOI

    http://dx.doi.org/10.1038/nmeth818

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028724631

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16299478


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Confocal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Fluorescence, Multiphoton", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Neurophysiology, Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Department of Neurophysiology, Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Helmchen", 
            "givenName": "Fritjof", 
            "id": "sg:person.0623522101.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623522101.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.414703.5", 
              "name": [
                "Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Denk", 
            "givenName": "Winfried", 
            "id": "sg:person.0601345626.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601345626.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/11698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019775562", 
              "https://doi.org/10.1038/11698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-2-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016385189", 
              "https://doi.org/10.1186/1475-925x-2-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013832359", 
              "https://doi.org/10.1038/nbt894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021577760", 
              "https://doi.org/10.1038/nn1335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35009107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010046110", 
              "https://doi.org/10.1038/35009107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003392261", 
              "https://doi.org/10.1038/nn736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031112982", 
              "https://doi.org/10.1038/nature01276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385161a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024578450", 
              "https://doi.org/10.1038/385161a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004240000435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043756078", 
              "https://doi.org/10.1007/s004240000435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-5348-6_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000102270", 
              "https://doi.org/10.1007/978-1-4757-5348-6_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017848486", 
              "https://doi.org/10.1038/nature03274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017974354", 
              "https://doi.org/10.1038/nrc778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038925934", 
              "https://doi.org/10.1038/4569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-003-1138-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042498598", 
              "https://doi.org/10.1007/s00424-003-1138-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034482403", 
              "https://doi.org/10.1038/nmeth706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034655204", 
              "https://doi.org/10.1038/nbt899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/14788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030389936", 
              "https://doi.org/10.1038/14788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046138818", 
              "https://doi.org/10.1038/nn1472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050119611", 
              "https://doi.org/10.1038/nature01273"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-11-18", 
        "datePublishedReg": "2005-11-18", 
        "description": "With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional\u2014including confocal\u2014fluorescence microscopy. Nonlinear optical microscopy, in particular two photon\u2013excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmeth818", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "high-resolution deep imaging", 
          "two-photon microscopy", 
          "nonlinear signal generation", 
          "nonlinear optical microscopy", 
          "large depth penetration", 
          "signal photons", 
          "nonlinear microscopy", 
          "deep imaging", 
          "optical microscopy", 
          "biological tissues", 
          "signal generation", 
          "depth penetration", 
          "deep tissues", 
          "microscopy", 
          "confocal fluorescence microscopy", 
          "photons", 
          "fluorescence microscopy", 
          "living animals", 
          "intact tissue", 
          "light", 
          "microns", 
          "tissue", 
          "imaging", 
          "fundamental concepts", 
          "generation", 
          "depth", 
          "origin", 
          "organs", 
          "animals", 
          "penetration", 
          "results", 
          "conditions", 
          "limitations", 
          "concept"
        ], 
        "name": "Deep tissue two-photon microscopy", 
        "pagination": "932-940", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028724631"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth818"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16299478"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth818", 
          "https://app.dimensions.ai/details/publication/pub.1028724631"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_399.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmeth818"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth818'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth818'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth818'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth818'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      85 URIs      57 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth818 schema:about N4ca99ba4cead402a96b0b33f05d6440c
    2 N51728a312ca34afa8954aa51854c8a5b
    3 N71a055a4362943e4b16853128f6da572
    4 N774711fe1a9b4d91bac8c58f1a10b67f
    5 N8b886c22eaea4e23aaa4f7416b22ffbe
    6 Na3847f63aa5b464a944511fff672e2d8
    7 anzsrc-for:06
    8 anzsrc-for:10
    9 anzsrc-for:11
    10 schema:author N53472dfe53504c579f0b0001bc1ba8ba
    11 schema:citation sg:pub.10.1007/978-1-4757-5348-6_28
    12 sg:pub.10.1007/s00424-003-1138-4
    13 sg:pub.10.1007/s004240000435
    14 sg:pub.10.1038/11698
    15 sg:pub.10.1038/14788
    16 sg:pub.10.1038/35009107
    17 sg:pub.10.1038/385161a0
    18 sg:pub.10.1038/4569
    19 sg:pub.10.1038/nature01273
    20 sg:pub.10.1038/nature01276
    21 sg:pub.10.1038/nature03274
    22 sg:pub.10.1038/nbt894
    23 sg:pub.10.1038/nbt899
    24 sg:pub.10.1038/nmeth706
    25 sg:pub.10.1038/nn1335
    26 sg:pub.10.1038/nn1472
    27 sg:pub.10.1038/nn736
    28 sg:pub.10.1038/nrc778
    29 sg:pub.10.1186/1475-925x-2-13
    30 schema:datePublished 2005-11-18
    31 schema:datePublishedReg 2005-11-18
    32 schema:description With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional—including confocal—fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N1dc9ffab45d44cf5b0b93a941cac2a58
    36 N6e56920c0ab244678db2c70e61a06938
    37 sg:journal.1033763
    38 schema:keywords animals
    39 biological tissues
    40 concept
    41 conditions
    42 confocal fluorescence microscopy
    43 deep imaging
    44 deep tissues
    45 depth
    46 depth penetration
    47 fluorescence microscopy
    48 fundamental concepts
    49 generation
    50 high-resolution deep imaging
    51 imaging
    52 intact tissue
    53 large depth penetration
    54 light
    55 limitations
    56 living animals
    57 microns
    58 microscopy
    59 nonlinear microscopy
    60 nonlinear optical microscopy
    61 nonlinear signal generation
    62 optical microscopy
    63 organs
    64 origin
    65 penetration
    66 photons
    67 results
    68 signal generation
    69 signal photons
    70 tissue
    71 two-photon microscopy
    72 schema:name Deep tissue two-photon microscopy
    73 schema:pagination 932-940
    74 schema:productId N79878ad1d03c41d2ad074e27476432af
    75 N7f330d0e066b4fa4925ca96ce3091fc0
    76 N8518917f667b49a7b2dc14715b18fa39
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724631
    78 https://doi.org/10.1038/nmeth818
    79 schema:sdDatePublished 2022-11-24T20:52
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Na0f5c54847cb42e3a8be81fa3656c7d2
    82 schema:url https://doi.org/10.1038/nmeth818
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N1dc9ffab45d44cf5b0b93a941cac2a58 schema:issueNumber 12
    87 rdf:type schema:PublicationIssue
    88 N4ca99ba4cead402a96b0b33f05d6440c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Microscopy, Fluorescence, Multiphoton
    90 rdf:type schema:DefinedTerm
    91 N51728a312ca34afa8954aa51854c8a5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Fluorescent Dyes
    93 rdf:type schema:DefinedTerm
    94 N53472dfe53504c579f0b0001bc1ba8ba rdf:first sg:person.0623522101.77
    95 rdf:rest N75ca0a23ac654bf9978254b95da06795
    96 N6e56920c0ab244678db2c70e61a06938 schema:volumeNumber 2
    97 rdf:type schema:PublicationVolume
    98 N71a055a4362943e4b16853128f6da572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Imaging, Three-Dimensional
    100 rdf:type schema:DefinedTerm
    101 N75ca0a23ac654bf9978254b95da06795 rdf:first sg:person.0601345626.67
    102 rdf:rest rdf:nil
    103 N774711fe1a9b4d91bac8c58f1a10b67f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Microscopy, Confocal
    105 rdf:type schema:DefinedTerm
    106 N79878ad1d03c41d2ad074e27476432af schema:name pubmed_id
    107 schema:value 16299478
    108 rdf:type schema:PropertyValue
    109 N7f330d0e066b4fa4925ca96ce3091fc0 schema:name doi
    110 schema:value 10.1038/nmeth818
    111 rdf:type schema:PropertyValue
    112 N8518917f667b49a7b2dc14715b18fa39 schema:name dimensions_id
    113 schema:value pub.1028724631
    114 rdf:type schema:PropertyValue
    115 N8b886c22eaea4e23aaa4f7416b22ffbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Humans
    117 rdf:type schema:DefinedTerm
    118 Na0f5c54847cb42e3a8be81fa3656c7d2 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 Na3847f63aa5b464a944511fff672e2d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Animals
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Biological Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Technology
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Medical and Health Sciences
    131 rdf:type schema:DefinedTerm
    132 sg:journal.1033763 schema:issn 1548-7091
    133 1548-7105
    134 schema:name Nature Methods
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.0601345626.67 schema:affiliation grid-institutes:grid.414703.5
    138 schema:familyName Denk
    139 schema:givenName Winfried
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601345626.67
    141 rdf:type schema:Person
    142 sg:person.0623522101.77 schema:affiliation grid-institutes:grid.7400.3
    143 schema:familyName Helmchen
    144 schema:givenName Fritjof
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623522101.77
    146 rdf:type schema:Person
    147 sg:pub.10.1007/978-1-4757-5348-6_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000102270
    148 https://doi.org/10.1007/978-1-4757-5348-6_28
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00424-003-1138-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042498598
    151 https://doi.org/10.1007/s00424-003-1138-4
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s004240000435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756078
    154 https://doi.org/10.1007/s004240000435
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/11698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019775562
    157 https://doi.org/10.1038/11698
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/14788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030389936
    160 https://doi.org/10.1038/14788
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/35009107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010046110
    163 https://doi.org/10.1038/35009107
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/385161a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024578450
    166 https://doi.org/10.1038/385161a0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/4569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038925934
    169 https://doi.org/10.1038/4569
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature01273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119611
    172 https://doi.org/10.1038/nature01273
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature01276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031112982
    175 https://doi.org/10.1038/nature01276
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature03274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017848486
    178 https://doi.org/10.1038/nature03274
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nbt894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832359
    181 https://doi.org/10.1038/nbt894
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nbt899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655204
    184 https://doi.org/10.1038/nbt899
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nmeth706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034482403
    187 https://doi.org/10.1038/nmeth706
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nn1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021577760
    190 https://doi.org/10.1038/nn1335
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nn1472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046138818
    193 https://doi.org/10.1038/nn1472
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nn736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003392261
    196 https://doi.org/10.1038/nn736
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nrc778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017974354
    199 https://doi.org/10.1038/nrc778
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1186/1475-925x-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016385189
    202 https://doi.org/10.1186/1475-925x-2-13
    203 rdf:type schema:CreativeWork
    204 grid-institutes:grid.414703.5 schema:alternateName Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120, Heidelberg, Germany
    205 schema:name Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120, Heidelberg, Germany
    206 rdf:type schema:Organization
    207 grid-institutes:grid.7400.3 schema:alternateName Department of Neurophysiology, Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland
    208 schema:name Department of Neurophysiology, Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...