Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

Joshua E Elias, Steven P Gygi

ABSTRACT

Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account. More... »

PAGES

207-214

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth1019

DOI

http://dx.doi.org/10.1038/nmeth1019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009487848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17327847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Storage and Retrieval", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elias", 
        "givenName": "Joshua E", 
        "id": "sg:person.0642032434.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642032434.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA", 
            "Taplin Biological Mass Spectrometry Facility, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gygi", 
        "givenName": "Steven P", 
        "id": "sg:person.012070607257.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070607257.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0404720101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010780626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t400003-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013198862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(02)00352-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013471407", 
          "https://doi.org/10.1016/s1044-0305(02)00352-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t400022-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017118319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r500012-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023696791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r500012-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023696791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m200074-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034180021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039817325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500339-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042973735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr025556v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045717219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051301484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627319", 
          "https://doi.org/10.1038/nbt930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627319", 
          "https://doi.org/10.1038/nbt930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034157w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034157w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac035229m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac035229m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr049754t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr0498638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr0504891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2005.9.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303621"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth1019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529212", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2517901", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2417625", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry", 
    "pagination": "207-214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d3231cf993ae8a463b512f3f3c081227f3d8e662a96c110543a665ba2544dbc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17327847"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth1019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009487848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth1019", 
      "https://app.dimensions.ai/details/publication/pub.1009487848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmeth1019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      63 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth1019 schema:about N0f5ddd30ec114ba9a18f33bc26c031c2
2 N129f41e1d2704b62971d361311c0e951
3 N3193399e39a6409a9e050e29bc710315
4 N3b36fac709c04579bdd52a528019a5b1
5 N86dbbaf0d6a6421395c8b0986631e633
6 N879d2c0a90674915a9e627a7d09745e7
7 Na0d8fa694df04bf5960873b9dc266877
8 Naee6d4ab27174087839389ac1fc5580f
9 Nc0b5baf6b3344723b247996412f9af5b
10 Nc98de82520e6428f8bc9e9f7ff766945
11 Ndf96fc3a8abc493680bf2e2bfb9d0a6d
12 Neb306aa957aa4046b7584520a181973a
13 Nfc24d11fe4f844e98d7e6b687e972f9a
14 anzsrc-for:03
15 anzsrc-for:0301
16 schema:author Na4d22301384840e1a3f41fcf511d29e8
17 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
18 sg:pub.10.1016/s1044-0305(02)00352-5
19 sg:pub.10.1038/nbt1240
20 sg:pub.10.1038/nbt930
21 sg:pub.10.1038/nmeth785
22 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2
23 https://doi.org/10.1002/pmic.200300721
24 https://doi.org/10.1021/ac025747h
25 https://doi.org/10.1021/ac034157w
26 https://doi.org/10.1021/ac035229m
27 https://doi.org/10.1021/pr025556v
28 https://doi.org/10.1021/pr049754t
29 https://doi.org/10.1021/pr0498638
30 https://doi.org/10.1021/pr0504891
31 https://doi.org/10.1073/pnas.0404720101
32 https://doi.org/10.1074/mcp.m200074-mcp200
33 https://doi.org/10.1074/mcp.m500339-mcp200
34 https://doi.org/10.1074/mcp.r500012-mcp200
35 https://doi.org/10.1074/mcp.t400003-mcp200
36 https://doi.org/10.1074/mcp.t400022-mcp200
37 https://doi.org/10.1089/omi.2005.9.364
38 schema:datePublished 2007-03
39 schema:datePublishedReg 2007-03-01
40 schema:description Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N8543783a38704dd1b4cefa33bf171d13
45 N91c67668da68482f809754a45095195c
46 sg:journal.1033763
47 schema:name Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
48 schema:pagination 207-214
49 schema:productId N031fa55c50f1482381cb9d0415a2b71e
50 N0402ad905b3146918f64ae1b09efdba3
51 N2635b76941ca43e5be4b950082642982
52 N7bf69bbb9bfb465d924b683244077029
53 Nfe1a1a44af634c008500584796420990
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009487848
55 https://doi.org/10.1038/nmeth1019
56 schema:sdDatePublished 2019-04-10T22:19
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N674a8f0c66c348ea9d8df3c37e613f7b
59 schema:url http://www.nature.com/articles/nmeth1019
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N031fa55c50f1482381cb9d0415a2b71e schema:name nlm_unique_id
64 schema:value 101215604
65 rdf:type schema:PropertyValue
66 N0402ad905b3146918f64ae1b09efdba3 schema:name pubmed_id
67 schema:value 17327847
68 rdf:type schema:PropertyValue
69 N0f5ddd30ec114ba9a18f33bc26c031c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Algorithms
71 rdf:type schema:DefinedTerm
72 N129f41e1d2704b62971d361311c0e951 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Sequence Analysis, Protein
74 rdf:type schema:DefinedTerm
75 N2635b76941ca43e5be4b950082642982 schema:name readcube_id
76 schema:value 2d3231cf993ae8a463b512f3f3c081227f3d8e662a96c110543a665ba2544dbc
77 rdf:type schema:PropertyValue
78 N3193399e39a6409a9e050e29bc710315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Databases, Protein
80 rdf:type schema:DefinedTerm
81 N3b36fac709c04579bdd52a528019a5b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Amino Acid Sequence
83 rdf:type schema:DefinedTerm
84 N5f712da37050437581a28177b1d21570 rdf:first sg:person.012070607257.17
85 rdf:rest rdf:nil
86 N674a8f0c66c348ea9d8df3c37e613f7b schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N7bf69bbb9bfb465d924b683244077029 schema:name dimensions_id
89 schema:value pub.1009487848
90 rdf:type schema:PropertyValue
91 N8543783a38704dd1b4cefa33bf171d13 schema:issueNumber 3
92 rdf:type schema:PublicationIssue
93 N86dbbaf0d6a6421395c8b0986631e633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Molecular Sequence Data
95 rdf:type schema:DefinedTerm
96 N879d2c0a90674915a9e627a7d09745e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Proteome
98 rdf:type schema:DefinedTerm
99 N91c67668da68482f809754a45095195c schema:volumeNumber 4
100 rdf:type schema:PublicationVolume
101 Na0d8fa694df04bf5960873b9dc266877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Sequence Alignment
103 rdf:type schema:DefinedTerm
104 Na4d22301384840e1a3f41fcf511d29e8 rdf:first sg:person.0642032434.17
105 rdf:rest N5f712da37050437581a28177b1d21570
106 Naee6d4ab27174087839389ac1fc5580f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sensitivity and Specificity
108 rdf:type schema:DefinedTerm
109 Nc0b5baf6b3344723b247996412f9af5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Peptide Mapping
111 rdf:type schema:DefinedTerm
112 Nc98de82520e6428f8bc9e9f7ff766945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Mass Spectrometry
114 rdf:type schema:DefinedTerm
115 Ndf96fc3a8abc493680bf2e2bfb9d0a6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Reproducibility of Results
117 rdf:type schema:DefinedTerm
118 Neb306aa957aa4046b7584520a181973a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Database Management Systems
120 rdf:type schema:DefinedTerm
121 Nfc24d11fe4f844e98d7e6b687e972f9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Information Storage and Retrieval
123 rdf:type schema:DefinedTerm
124 Nfe1a1a44af634c008500584796420990 schema:name doi
125 schema:value 10.1038/nmeth1019
126 rdf:type schema:PropertyValue
127 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
131 schema:name Analytical Chemistry
132 rdf:type schema:DefinedTerm
133 sg:grant.2417625 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
134 rdf:type schema:MonetaryGrant
135 sg:grant.2517901 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
136 rdf:type schema:MonetaryGrant
137 sg:grant.2529212 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
138 rdf:type schema:MonetaryGrant
139 sg:journal.1033763 schema:issn 1548-7091
140 1548-7105
141 schema:name Nature Methods
142 rdf:type schema:Periodical
143 sg:person.012070607257.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
144 schema:familyName Gygi
145 schema:givenName Steven P
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070607257.17
147 rdf:type schema:Person
148 sg:person.0642032434.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
149 schema:familyName Elias
150 schema:givenName Joshua E
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642032434.17
152 rdf:type schema:Person
153 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
154 https://doi.org/10.1016/1044-0305(94)80016-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1016/s1044-0305(02)00352-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013471407
157 https://doi.org/10.1016/s1044-0305(02)00352-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nbt1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011188595
160 https://doi.org/10.1038/nbt1240
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nbt930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052627319
163 https://doi.org/10.1038/nbt930
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031978253
166 https://doi.org/10.1038/nmeth785
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051301484
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/pmic.200300721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817325
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ac025747h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030226321
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ac034157w schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994969
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ac035229m schema:sameAs https://app.dimensions.ai/details/publication/pub.1054995487
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/pr025556v schema:sameAs https://app.dimensions.ai/details/publication/pub.1045717219
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/pr049754t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290479
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/pr0498638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290560
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/pr0504891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290935
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0404720101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010780626
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1074/mcp.m200074-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034180021
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1074/mcp.m500339-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042973735
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1074/mcp.r500012-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023696791
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1074/mcp.t400003-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013198862
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1074/mcp.t400022-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017118319
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1089/omi.2005.9.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303621
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
201 schema:name Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA
202 Taplin Biological Mass Spectrometry Facility, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...