Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

Joshua E Elias, Steven P Gygi

ABSTRACT

Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account. More... »

PAGES

207-214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth1019

DOI

http://dx.doi.org/10.1038/nmeth1019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009487848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17327847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Storage and Retrieval", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elias", 
        "givenName": "Joshua E", 
        "id": "sg:person.0642032434.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642032434.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA", 
            "Taplin Biological Mass Spectrometry Facility, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gygi", 
        "givenName": "Steven P", 
        "id": "sg:person.012070607257.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070607257.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0404720101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010780626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t400003-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013198862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(02)00352-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013471407", 
          "https://doi.org/10.1016/s1044-0305(02)00352-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t400022-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017118319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r500012-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023696791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r500012-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023696791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978253", 
          "https://doi.org/10.1038/nmeth785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m200074-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034180021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039817325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500339-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042973735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr025556v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045717219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051301484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627319", 
          "https://doi.org/10.1038/nbt930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627319", 
          "https://doi.org/10.1038/nbt930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034157w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034157w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac035229m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac035229m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr049754t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr0498638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr0504891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2005.9.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303621"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth1019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529212", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2517901", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2417625", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry", 
    "pagination": "207-214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d3231cf993ae8a463b512f3f3c081227f3d8e662a96c110543a665ba2544dbc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17327847"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth1019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009487848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth1019", 
      "https://app.dimensions.ai/details/publication/pub.1009487848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmeth1019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth1019'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      63 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth1019 schema:about N0ccdaf3aff1544778ab27bb831f6291f
2 N1f73a63fa7c44a40b35da407e1690b9c
3 N2ffe2431899743069ba222973e69a76f
4 N3e6e3c9a5a95438eae9026db9ea27c17
5 N3f5d18543146468983be6048d8ef679b
6 N5ea798970e4b4449ac3b020a21a9feb9
7 Nadf0c797074a4839812da0b1c88c0cfa
8 Ncd4766208db84eb0867042a08e6efde2
9 Nd79c582ffc6941c3a78347528ecf64fc
10 Nda14396a11684094af6b8df5067eb753
11 Necdd93eb9a1e45c5875f308eea5a5021
12 Nf13df61e6bb04ec1b6caa88270afeb6d
13 Nf30cf43d0bfe4112b75c2ed7124de1f9
14 anzsrc-for:03
15 anzsrc-for:0301
16 schema:author Naf7555e18ea94023bf0e108fb6ab4c9a
17 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
18 sg:pub.10.1016/s1044-0305(02)00352-5
19 sg:pub.10.1038/nbt1240
20 sg:pub.10.1038/nbt930
21 sg:pub.10.1038/nmeth785
22 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2
23 https://doi.org/10.1002/pmic.200300721
24 https://doi.org/10.1021/ac025747h
25 https://doi.org/10.1021/ac034157w
26 https://doi.org/10.1021/ac035229m
27 https://doi.org/10.1021/pr025556v
28 https://doi.org/10.1021/pr049754t
29 https://doi.org/10.1021/pr0498638
30 https://doi.org/10.1021/pr0504891
31 https://doi.org/10.1073/pnas.0404720101
32 https://doi.org/10.1074/mcp.m200074-mcp200
33 https://doi.org/10.1074/mcp.m500339-mcp200
34 https://doi.org/10.1074/mcp.r500012-mcp200
35 https://doi.org/10.1074/mcp.t400003-mcp200
36 https://doi.org/10.1074/mcp.t400022-mcp200
37 https://doi.org/10.1089/omi.2005.9.364
38 schema:datePublished 2007-03
39 schema:datePublishedReg 2007-03-01
40 schema:description Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N19ecc075eb32411f81bbbbeecda13390
45 N6ea618e2640e49abafd36e9c9f5925f3
46 sg:journal.1033763
47 schema:name Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
48 schema:pagination 207-214
49 schema:productId N40df5c9a53924e2396adc3d9868c285e
50 N6179a29c606d48d28471e91aaad968f6
51 N90303a4476b34b1a9466f612df187951
52 Na7e9a7d12b4e4532a5427b691edec45f
53 Nd5ceb1e1b43549a4a430302d048262f4
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009487848
55 https://doi.org/10.1038/nmeth1019
56 schema:sdDatePublished 2019-04-10T22:19
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N23c56239b3cb49f0a871b193c7d01b60
59 schema:url http://www.nature.com/articles/nmeth1019
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0ccdaf3aff1544778ab27bb831f6291f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Algorithms
65 rdf:type schema:DefinedTerm
66 N19ecc075eb32411f81bbbbeecda13390 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 N1f73a63fa7c44a40b35da407e1690b9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Information Storage and Retrieval
70 rdf:type schema:DefinedTerm
71 N23c56239b3cb49f0a871b193c7d01b60 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N2ffe2431899743069ba222973e69a76f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Sequence Alignment
75 rdf:type schema:DefinedTerm
76 N3e6e3c9a5a95438eae9026db9ea27c17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Proteome
78 rdf:type schema:DefinedTerm
79 N3f5d18543146468983be6048d8ef679b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Sensitivity and Specificity
81 rdf:type schema:DefinedTerm
82 N40df5c9a53924e2396adc3d9868c285e schema:name dimensions_id
83 schema:value pub.1009487848
84 rdf:type schema:PropertyValue
85 N5ea798970e4b4449ac3b020a21a9feb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Amino Acid Sequence
87 rdf:type schema:DefinedTerm
88 N6179a29c606d48d28471e91aaad968f6 schema:name readcube_id
89 schema:value 2d3231cf993ae8a463b512f3f3c081227f3d8e662a96c110543a665ba2544dbc
90 rdf:type schema:PropertyValue
91 N6bd6dcb0789743faa1160c06902054d7 rdf:first sg:person.012070607257.17
92 rdf:rest rdf:nil
93 N6ea618e2640e49abafd36e9c9f5925f3 schema:volumeNumber 4
94 rdf:type schema:PublicationVolume
95 N90303a4476b34b1a9466f612df187951 schema:name nlm_unique_id
96 schema:value 101215604
97 rdf:type schema:PropertyValue
98 Na7e9a7d12b4e4532a5427b691edec45f schema:name doi
99 schema:value 10.1038/nmeth1019
100 rdf:type schema:PropertyValue
101 Nadf0c797074a4839812da0b1c88c0cfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Mass Spectrometry
103 rdf:type schema:DefinedTerm
104 Naf7555e18ea94023bf0e108fb6ab4c9a rdf:first sg:person.0642032434.17
105 rdf:rest N6bd6dcb0789743faa1160c06902054d7
106 Ncd4766208db84eb0867042a08e6efde2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Reproducibility of Results
108 rdf:type schema:DefinedTerm
109 Nd5ceb1e1b43549a4a430302d048262f4 schema:name pubmed_id
110 schema:value 17327847
111 rdf:type schema:PropertyValue
112 Nd79c582ffc6941c3a78347528ecf64fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Molecular Sequence Data
114 rdf:type schema:DefinedTerm
115 Nda14396a11684094af6b8df5067eb753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Sequence Analysis, Protein
117 rdf:type schema:DefinedTerm
118 Necdd93eb9a1e45c5875f308eea5a5021 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Databases, Protein
120 rdf:type schema:DefinedTerm
121 Nf13df61e6bb04ec1b6caa88270afeb6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Database Management Systems
123 rdf:type schema:DefinedTerm
124 Nf30cf43d0bfe4112b75c2ed7124de1f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Peptide Mapping
126 rdf:type schema:DefinedTerm
127 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
131 schema:name Analytical Chemistry
132 rdf:type schema:DefinedTerm
133 sg:grant.2417625 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
134 rdf:type schema:MonetaryGrant
135 sg:grant.2517901 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
136 rdf:type schema:MonetaryGrant
137 sg:grant.2529212 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth1019
138 rdf:type schema:MonetaryGrant
139 sg:journal.1033763 schema:issn 1548-7091
140 1548-7105
141 schema:name Nature Methods
142 rdf:type schema:Periodical
143 sg:person.012070607257.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
144 schema:familyName Gygi
145 schema:givenName Steven P
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070607257.17
147 rdf:type schema:Person
148 sg:person.0642032434.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
149 schema:familyName Elias
150 schema:givenName Joshua E
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642032434.17
152 rdf:type schema:Person
153 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
154 https://doi.org/10.1016/1044-0305(94)80016-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1016/s1044-0305(02)00352-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013471407
157 https://doi.org/10.1016/s1044-0305(02)00352-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nbt1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011188595
160 https://doi.org/10.1038/nbt1240
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nbt930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052627319
163 https://doi.org/10.1038/nbt930
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031978253
166 https://doi.org/10.1038/nmeth785
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051301484
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/pmic.200300721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817325
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ac025747h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030226321
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ac034157w schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994969
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ac035229m schema:sameAs https://app.dimensions.ai/details/publication/pub.1054995487
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/pr025556v schema:sameAs https://app.dimensions.ai/details/publication/pub.1045717219
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/pr049754t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290479
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/pr0498638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290560
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/pr0504891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290935
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0404720101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010780626
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1074/mcp.m200074-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034180021
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1074/mcp.m500339-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042973735
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1074/mcp.r500012-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023696791
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1074/mcp.t400003-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013198862
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1074/mcp.t400022-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017118319
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1089/omi.2005.9.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303621
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
201 schema:name Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA
202 Taplin Biological Mass Spectrometry Facility, 240 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...