Optimized library preparation method for next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10

AUTHORS

Fraz Syed, Haiying Grunenwald, Nicholas Caruccio

ABSTRACT

The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera™ technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure. More... »

PAGES

782

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.f.269

DOI

http://dx.doi.org/10.1038/nmeth.f.269

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033304861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Syed", 
        "givenName": "Fraz", 
        "id": "sg:person.01012307442.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012307442.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grunenwald", 
        "givenName": "Haiying", 
        "id": "sg:person.01022735633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022735633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caruccio", 
        "givenName": "Nicholas", 
        "id": "sg:person.01101047252.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101047252.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera\u2122 technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/nmeth.f.269", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Optimized library preparation method for next-generation sequencing", 
    "pagination": "782", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ea8be51a54e8c828d19652cba650028b6c7211d6b7f87c6d37d55365ef1e822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.f.269"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033304861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.f.269", 
      "https://app.dimensions.ai/details/publication/pub.1033304861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmeth.f.269"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.f.269 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N75dfe3736d164ee1ae676c620923594f
4 schema:datePublished 2009-10
5 schema:datePublishedReg 2009-10-01
6 schema:description The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera™ technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N24bdc4f7d4d64f128d4a8b67d05eedf0
11 Nfb7aba805b714c3180fa3a1c069c2249
12 sg:journal.1033763
13 schema:name Optimized library preparation method for next-generation sequencing
14 schema:pagination 782
15 schema:productId N2f1ed5b6226f44a5a8e1558008483562
16 N6edca625341f4cc49ca890e8e95c1896
17 N7faed4ca8c1748948ba54eeae9e0415c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033304861
19 https://doi.org/10.1038/nmeth.f.269
20 schema:sdDatePublished 2019-04-10T21:24
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb0acc636db0e430eaaa8df30acca64b4
23 schema:url https://www.nature.com/articles/nmeth.f.269
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1c57cbc8ac764f20bbe1ae9254d5d7b7 rdf:first sg:person.01022735633.09
28 rdf:rest Neda48ba485c14596b53473258137f3d2
29 N24bdc4f7d4d64f128d4a8b67d05eedf0 schema:issueNumber 10
30 rdf:type schema:PublicationIssue
31 N2f1ed5b6226f44a5a8e1558008483562 schema:name readcube_id
32 schema:value 9ea8be51a54e8c828d19652cba650028b6c7211d6b7f87c6d37d55365ef1e822
33 rdf:type schema:PropertyValue
34 N6edca625341f4cc49ca890e8e95c1896 schema:name dimensions_id
35 schema:value pub.1033304861
36 rdf:type schema:PropertyValue
37 N75dfe3736d164ee1ae676c620923594f rdf:first sg:person.01012307442.26
38 rdf:rest N1c57cbc8ac764f20bbe1ae9254d5d7b7
39 N7faed4ca8c1748948ba54eeae9e0415c schema:name doi
40 schema:value 10.1038/nmeth.f.269
41 rdf:type schema:PropertyValue
42 N8c3ebbf31da6492aa51b6377a42a6218 schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
43 rdf:type schema:Organization
44 Nb0acc636db0e430eaaa8df30acca64b4 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Ne608625fe94e4a2bb633c690531dfa73 schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
47 rdf:type schema:Organization
48 Neda48ba485c14596b53473258137f3d2 rdf:first sg:person.01101047252.22
49 rdf:rest rdf:nil
50 Nf3401b2bdaaa4f019300e9daf2aa5eac schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
51 rdf:type schema:Organization
52 Nfb7aba805b714c3180fa3a1c069c2249 schema:volumeNumber 6
53 rdf:type schema:PublicationVolume
54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biological Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
58 schema:name Genetics
59 rdf:type schema:DefinedTerm
60 sg:journal.1033763 schema:issn 1548-7091
61 1548-7105
62 schema:name Nature Methods
63 rdf:type schema:Periodical
64 sg:person.01012307442.26 schema:affiliation N8c3ebbf31da6492aa51b6377a42a6218
65 schema:familyName Syed
66 schema:givenName Fraz
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012307442.26
68 rdf:type schema:Person
69 sg:person.01022735633.09 schema:affiliation Nf3401b2bdaaa4f019300e9daf2aa5eac
70 schema:familyName Grunenwald
71 schema:givenName Haiying
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022735633.09
73 rdf:type schema:Person
74 sg:person.01101047252.22 schema:affiliation Ne608625fe94e4a2bb633c690531dfa73
75 schema:familyName Caruccio
76 schema:givenName Nicholas
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101047252.22
78 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...