Optimized library preparation method for next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10

AUTHORS

Fraz Syed, Haiying Grunenwald, Nicholas Caruccio

ABSTRACT

The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera™ technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure. More... »

PAGES

782

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.f.269

DOI

http://dx.doi.org/10.1038/nmeth.f.269

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033304861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Syed", 
        "givenName": "Fraz", 
        "id": "sg:person.01012307442.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012307442.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grunenwald", 
        "givenName": "Haiying", 
        "id": "sg:person.01022735633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022735633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epicentre Biotechnologies, Madison, Wisconsin, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caruccio", 
        "givenName": "Nicholas", 
        "id": "sg:person.01101047252.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101047252.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera\u2122 technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/nmeth.f.269", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Optimized library preparation method for next-generation sequencing", 
    "pagination": "782", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ea8be51a54e8c828d19652cba650028b6c7211d6b7f87c6d37d55365ef1e822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.f.269"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033304861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.f.269", 
      "https://app.dimensions.ai/details/publication/pub.1033304861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmeth.f.269"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.f.269'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.f.269 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9403ffe3f543421fb8be550e711abb43
4 schema:datePublished 2009-10
5 schema:datePublishedReg 2009-10-01
6 schema:description The advent of next-generation sequencing has made possible genome analysis at previously unattainable depth. Roche, Illumina and Life Technologies, among others, have developedwell-established platforms for deep sequencing. Regardless of the instrument, one of the bottlenecks for next-generation sequencing is the amount of time and resources required for template and library preparation. Here we describe Epicentre's Nextera™ technology (covered by issued and/or pending patents), which counters this bottleneck and simplifies the sample preparation procedure.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N5cadc1c3a332495a89903fdb78d790ff
11 N99d0b9257c754ac28a32896e475f2d93
12 sg:journal.1033763
13 schema:name Optimized library preparation method for next-generation sequencing
14 schema:pagination 782
15 schema:productId N11ccc77e12bb4fefa30193c0cdb12da4
16 Ned8bc93d81b04850951e630019f56a3d
17 Nfd1257b070594437bc527d5861432bbf
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033304861
19 https://doi.org/10.1038/nmeth.f.269
20 schema:sdDatePublished 2019-04-10T21:24
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N479bf2c354e44fa5877ecaad13a7f8f2
23 schema:url https://www.nature.com/articles/nmeth.f.269
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N11ccc77e12bb4fefa30193c0cdb12da4 schema:name readcube_id
28 schema:value 9ea8be51a54e8c828d19652cba650028b6c7211d6b7f87c6d37d55365ef1e822
29 rdf:type schema:PropertyValue
30 N38e241993ae84677921f3067b25f16aa rdf:first sg:person.01101047252.22
31 rdf:rest rdf:nil
32 N4498f52e1b9040c88eea503ffb696568 schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
33 rdf:type schema:Organization
34 N479bf2c354e44fa5877ecaad13a7f8f2 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N5cadc1c3a332495a89903fdb78d790ff schema:issueNumber 10
37 rdf:type schema:PublicationIssue
38 N8565b2def6d84433811de2f62115bb9b schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
39 rdf:type schema:Organization
40 N8c3ad96608b54580a2646c0c33b7a9af rdf:first sg:person.01022735633.09
41 rdf:rest N38e241993ae84677921f3067b25f16aa
42 N9403ffe3f543421fb8be550e711abb43 rdf:first sg:person.01012307442.26
43 rdf:rest N8c3ad96608b54580a2646c0c33b7a9af
44 N99d0b9257c754ac28a32896e475f2d93 schema:volumeNumber 6
45 rdf:type schema:PublicationVolume
46 Nabc3ed073a814ac8bc85e3191b7c1e9a schema:name Epicentre Biotechnologies, Madison, Wisconsin, USA.
47 rdf:type schema:Organization
48 Ned8bc93d81b04850951e630019f56a3d schema:name dimensions_id
49 schema:value pub.1033304861
50 rdf:type schema:PropertyValue
51 Nfd1257b070594437bc527d5861432bbf schema:name doi
52 schema:value 10.1038/nmeth.f.269
53 rdf:type schema:PropertyValue
54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biological Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
58 schema:name Genetics
59 rdf:type schema:DefinedTerm
60 sg:journal.1033763 schema:issn 1548-7091
61 1548-7105
62 schema:name Nature Methods
63 rdf:type schema:Periodical
64 sg:person.01012307442.26 schema:affiliation N8565b2def6d84433811de2f62115bb9b
65 schema:familyName Syed
66 schema:givenName Fraz
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012307442.26
68 rdf:type schema:Person
69 sg:person.01022735633.09 schema:affiliation N4498f52e1b9040c88eea503ffb696568
70 schema:familyName Grunenwald
71 schema:givenName Haiying
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022735633.09
73 rdf:type schema:Person
74 sg:person.01101047252.22 schema:affiliation Nabc3ed073a814ac8bc85e3191b7c1e9a
75 schema:familyName Caruccio
76 schema:givenName Nicholas
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101047252.22
78 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...