scmap: projection of single-cell RNA-seq data across data sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Vladimir Yu Kiselev, Andrew Yiu, Martin Hemberg

ABSTRACT

Single-cell RNA-seq (scRNA-seq) allows researchers to define cell types on the basis of unsupervised clustering of the transcriptome. However, differences in experimental methods and computational analyses make it challenging to compare data across experiments. Here we present scmap (http://bioconductor.org/packages/scmap; web version at http://www.sanger.ac.uk/science/tools/scmap), a method for projecting cells from an scRNA-seq data set onto cell types or individual cells from other experiments. More... »

PAGES

359

Journal

TITLE

Nature Methods

ISSUE

5

VOLUME

15

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.4644

DOI

http://dx.doi.org/10.1038/nmeth.4644

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101885643

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29608555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Sanger Institute, Hinxton, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiselev", 
        "givenName": "Vladimir Yu", 
        "id": "sg:person.07357340013.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357340013.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Sanger Institute, Hinxton, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yiu", 
        "givenName": "Andrew", 
        "id": "sg:person.012474675141.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474675141.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Sanger Institute, Hinxton, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemberg", 
        "givenName": "Martin", 
        "id": "sg:person.0777452173.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/h0026256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001724590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006029874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016760496", 
          "https://doi.org/10.1038/nbt.3711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017566891", 
          "https://doi.org/10.1038/nmeth.2645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2014.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017950805", 
          "https://doi.org/10.1038/nprot.2014.006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018546171", 
          "https://doi.org/10.1038/nbt.2859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep39921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022676626", 
          "https://doi.org/10.1038/srep39921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022699331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cels.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023439592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.04.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029937786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2016.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032593182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035294760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2016.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036600645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040319541", 
          "https://doi.org/10.1038/nature18323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.07.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046355133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cels.2016.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047903957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.2660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050140072", 
          "https://doi.org/10.1038/nsmb.2660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0938-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874242", 
          "https://doi.org/10.1186/s13059-016-0938-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059415140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.20487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084003365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086022769", 
          "https://doi.org/10.1038/nature22796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086022769", 
          "https://doi.org/10.1038/nature22796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086022769", 
          "https://doi.org/10.1038/nature22796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.27041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099603454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03282-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191486", 
          "https://doi.org/10.1038/s41467-018-03282-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03282-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191486", 
          "https://doi.org/10.1038/s41467-018-03282-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Single-cell RNA-seq (scRNA-seq) allows researchers to define cell types on the basis of unsupervised clustering of the transcriptome. However, differences in experimental methods and computational analyses make it challenging to compare data across experiments. Here we present scmap (http://bioconductor.org/packages/scmap; web version at http://www.sanger.ac.uk/science/tools/scmap), a method for projecting cells from an scRNA-seq data set onto cell types or individual cells from other experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.4644", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "scmap: projection of single-cell RNA-seq data across data sets", 
    "pagination": "359", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03f448504c1434441732270bc5d09aaed11f7c55b60f160d6046890eff99fe47"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29608555"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.4644"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101885643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.4644", 
      "https://app.dimensions.ai/details/publication/pub.1101885643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmeth.4644"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4644'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4644'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4644'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4644'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.4644 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N0b3969d63b5f44a293143e647f96d841
4 schema:citation sg:pub.10.1023/a:1010933404324
5 sg:pub.10.1038/nature18323
6 sg:pub.10.1038/nature22796
7 sg:pub.10.1038/nbt.2859
8 sg:pub.10.1038/nbt.3711
9 sg:pub.10.1038/nmeth.2645
10 sg:pub.10.1038/nprot.2014.006
11 sg:pub.10.1038/nsmb.2660
12 sg:pub.10.1038/s41467-018-03282-0
13 sg:pub.10.1038/srep39921
14 sg:pub.10.1186/s13059-016-0938-8
15 https://doi.org/10.1016/j.cell.2015.04.044
16 https://doi.org/10.1016/j.cell.2015.05.002
17 https://doi.org/10.1016/j.cell.2016.07.054
18 https://doi.org/10.1016/j.cell.2016.09.027
19 https://doi.org/10.1016/j.cels.2016.08.011
20 https://doi.org/10.1016/j.cels.2016.09.002
21 https://doi.org/10.1016/j.cmet.2016.08.018
22 https://doi.org/10.1016/j.cmet.2016.08.020
23 https://doi.org/10.1016/s0022-2836(05)80360-2
24 https://doi.org/10.1037/h0026256
25 https://doi.org/10.1093/bioinformatics/btw777
26 https://doi.org/10.1109/tpami.2010.57
27 https://doi.org/10.1126/science.1245316
28 https://doi.org/10.7554/elife.20487
29 https://doi.org/10.7554/elife.27041
30 schema:datePublished 2018-05
31 schema:datePublishedReg 2018-05-01
32 schema:description Single-cell RNA-seq (scRNA-seq) allows researchers to define cell types on the basis of unsupervised clustering of the transcriptome. However, differences in experimental methods and computational analyses make it challenging to compare data across experiments. Here we present scmap (http://bioconductor.org/packages/scmap; web version at http://www.sanger.ac.uk/science/tools/scmap), a method for projecting cells from an scRNA-seq data set onto cell types or individual cells from other experiments.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N9f4db895727f4914ab98dac696a38fcc
37 Ncb1efe67d82d479495b6c4a29d671efa
38 sg:journal.1033763
39 schema:name scmap: projection of single-cell RNA-seq data across data sets
40 schema:pagination 359
41 schema:productId N4979e4f4e7ec4fae8a01cdaf82dc7dd1
42 N864c6c44097e4afface012456ef72eb1
43 N8b450460a2ad422384498d215a02b4c7
44 Nd53ec42a5a6d4270866a561a1929e76c
45 Nf6d91a7af60a47abbe4a94a4094406b2
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101885643
47 https://doi.org/10.1038/nmeth.4644
48 schema:sdDatePublished 2019-04-11T13:49
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9d016bc8be544c288d8009eca91137e2
51 schema:url https://www.nature.com/articles/nmeth.4644
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0aa24d7f9e8b4d4cb9777257ff933abf rdf:first sg:person.012474675141.77
56 rdf:rest Ne99f24fbcabd406fb7e4b8ff774bc2b1
57 N0b3969d63b5f44a293143e647f96d841 rdf:first sg:person.07357340013.35
58 rdf:rest N0aa24d7f9e8b4d4cb9777257ff933abf
59 N4979e4f4e7ec4fae8a01cdaf82dc7dd1 schema:name doi
60 schema:value 10.1038/nmeth.4644
61 rdf:type schema:PropertyValue
62 N864c6c44097e4afface012456ef72eb1 schema:name readcube_id
63 schema:value 03f448504c1434441732270bc5d09aaed11f7c55b60f160d6046890eff99fe47
64 rdf:type schema:PropertyValue
65 N8b450460a2ad422384498d215a02b4c7 schema:name pubmed_id
66 schema:value 29608555
67 rdf:type schema:PropertyValue
68 N9d016bc8be544c288d8009eca91137e2 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N9f4db895727f4914ab98dac696a38fcc schema:issueNumber 5
71 rdf:type schema:PublicationIssue
72 Ncb1efe67d82d479495b6c4a29d671efa schema:volumeNumber 15
73 rdf:type schema:PublicationVolume
74 Nd53ec42a5a6d4270866a561a1929e76c schema:name dimensions_id
75 schema:value pub.1101885643
76 rdf:type schema:PropertyValue
77 Ne99f24fbcabd406fb7e4b8ff774bc2b1 rdf:first sg:person.0777452173.73
78 rdf:rest rdf:nil
79 Nf6d91a7af60a47abbe4a94a4094406b2 schema:name nlm_unique_id
80 schema:value 101215604
81 rdf:type schema:PropertyValue
82 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
83 schema:name Biological Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biochemistry and Cell Biology
87 rdf:type schema:DefinedTerm
88 sg:journal.1033763 schema:issn 1548-7091
89 1548-7105
90 schema:name Nature Methods
91 rdf:type schema:Periodical
92 sg:person.012474675141.77 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
93 schema:familyName Yiu
94 schema:givenName Andrew
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474675141.77
96 rdf:type schema:Person
97 sg:person.07357340013.35 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
98 schema:familyName Kiselev
99 schema:givenName Vladimir Yu
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357340013.35
101 rdf:type schema:Person
102 sg:person.0777452173.73 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
103 schema:familyName Hemberg
104 schema:givenName Martin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73
106 rdf:type schema:Person
107 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
108 https://doi.org/10.1023/a:1010933404324
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nature18323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040319541
111 https://doi.org/10.1038/nature18323
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nature22796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086022769
114 https://doi.org/10.1038/nature22796
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nbt.2859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018546171
117 https://doi.org/10.1038/nbt.2859
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nbt.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016760496
120 https://doi.org/10.1038/nbt.3711
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nmeth.2645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017566891
123 https://doi.org/10.1038/nmeth.2645
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nprot.2014.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017950805
126 https://doi.org/10.1038/nprot.2014.006
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nsmb.2660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050140072
129 https://doi.org/10.1038/nsmb.2660
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/s41467-018-03282-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191486
132 https://doi.org/10.1038/s41467-018-03282-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/srep39921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022676626
135 https://doi.org/10.1038/srep39921
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/s13059-016-0938-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874242
138 https://doi.org/10.1186/s13059-016-0938-8
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cell.2015.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029937786
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cell.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006029874
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cell.2016.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046355133
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cell.2016.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022699331
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cels.2016.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047903957
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cels.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023439592
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cmet.2016.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036600645
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cmet.2016.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032593182
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1037/h0026256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001724590
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btw777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415140
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tpami.2010.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743975
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1245316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035294760
165 rdf:type schema:CreativeWork
166 https://doi.org/10.7554/elife.20487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084003365
167 rdf:type schema:CreativeWork
168 https://doi.org/10.7554/elife.27041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099603454
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
171 schema:name Wellcome Sanger Institute, Hinxton, UK.
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...