CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Shengdar Q Tsai, Nhu T Nguyen, Jose Malagon-Lopez, Ved V Topkar, Martin J Aryee, J Keith Joung

ABSTRACT

Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9. More... »

PAGES

607

References to SciGraph publications

  • 2017-11-08. Circularization for In vitro Reporting of Cleavage Effects (CIRCLE-seq) in PROTOCOL EXCHANGE
  • 2015-11. Cas9 gRNA engineering for genome editing, activation and repression in NATURE METHODS
  • 2015-04. In vivo genome editing using Staphylococcus aureus Cas9 in NATURE
  • 2013-09. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity in NATURE BIOTECHNOLOGY
  • 2016-01. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects in NATURE
  • 2015-03. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases in NATURE BIOTECHNOLOGY
  • 2015-10. A global reference for human genetic variation in NATURE
  • 2013-10. Cas9 as a versatile tool for engineering biology in NATURE METHODS
  • 2015-02. Therapeutic genome editing: prospects and challenges in NATURE MEDICINE
  • 2015-03. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells in NATURE METHODS
  • 2015-11. Conformational control of DNA target cleavage by CRISPR–Cas9 in NATURE
  • 2014-12. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells in NATURE COMMUNICATIONS
  • 2012-12. Pathway choice in DNA double strand break repair: observations of a balancing act in GENOME INTEGRITY
  • 2014-03. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs in NATURE BIOTECHNOLOGY
  • 2013-04. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing in NATURE METHODS
  • 2014-09. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease in NATURE
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2011-09. An unbiased genome-wide analysis of zinc-finger nuclease specificity in NATURE BIOTECHNOLOGY
  • 2016-05. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases in NATURE REVIEWS GENETICS
  • 2014-04. CRISPR-Cas systems for editing, regulating and targeting genomes in NATURE BIOTECHNOLOGY
  • 2015-01. Bring out your dead in NATURE BIOTECHNOLOGY
  • 2015-03. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases in NATURE BIOTECHNOLOGY
  • 2013-03. Efficient genome editing in zebrafish using a CRISPR-Cas system in NATURE BIOTECHNOLOGY
  • 2016-01. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery in NATURE METHODS
  • 2015-11. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.4278

    DOI

    http://dx.doi.org/10.1038/nmeth.4278

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085099497

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28459458


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clustered Regularly Interspaced Short Palindromic Repeats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsai", 
            "givenName": "Shengdar Q", 
            "id": "sg:person.0742101567.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742101567.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nguyen", 
            "givenName": "Nhu T", 
            "id": "sg:person.01104421661.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104421661.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.", 
                "Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malagon-Lopez", 
            "givenName": "Jose", 
            "id": "sg:person.016375345523.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016375345523.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Topkar", 
            "givenName": "Ved V", 
            "id": "sg:person.01237352710.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237352710.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.", 
                "Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aryee", 
            "givenName": "Martin J", 
            "id": "sg:person.0636535214.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joung", 
            "givenName": "J Keith", 
            "id": "sg:person.0667170477.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170477.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.3123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000757158", 
              "https://doi.org/10.1038/nbt.3123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001208933", 
              "https://doi.org/10.1038/nmeth.3684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.1.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005817660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007302590", 
              "https://doi.org/10.1038/nbt.2673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007457308", 
              "https://doi.org/10.1038/ncomms6507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007457308", 
              "https://doi.org/10.1038/ncomms6507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.199588.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007997816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008703730", 
              "https://doi.org/10.1038/nmeth.2649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.febslet.2010.07.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009333473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010657174", 
              "https://doi.org/10.1038/nrg.2016.28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010800066", 
              "https://doi.org/10.1038/nature16526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011565053", 
              "https://doi.org/10.1038/nmeth.2408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012031985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-9414-3-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014227204", 
              "https://doi.org/10.1186/2041-9414-3-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019168198", 
              "https://doi.org/10.1038/nature14299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1231143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812064", 
              "https://doi.org/10.1038/nature15393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021849416", 
              "https://doi.org/10.1038/nbt.3117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.14.12.8096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022051171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022072971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022904685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.00471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023633935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024988605", 
              "https://doi.org/10.1038/nbt.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028216230", 
              "https://doi.org/10.1038/nmeth.3580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1258096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033404992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033698278", 
              "https://doi.org/10.1038/nbt.1948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033919606", 
              "https://doi.org/10.1038/nbt.3101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034874827", 
              "https://doi.org/10.1038/nmeth.3284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036390967", 
              "https://doi.org/10.1038/nature13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-genet-110410-132435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038189748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038520013", 
              "https://doi.org/10.1038/nbt.2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039182708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040303808", 
              "https://doi.org/10.1038/nbt.3390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1225829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/hum.2015.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042975645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/febs.13763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047104583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.40.110405.090451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047236527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047311922", 
              "https://doi.org/10.1038/nature15544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048637524", 
              "https://doi.org/10.1038/nbt.2808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mt.2016.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050147590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052797737", 
              "https://doi.org/10.1038/nm.3793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/rna.23764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072310097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/protex.2017.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092599526", 
              "https://doi.org/10.1038/protex.2017.147"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmeth.4278", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2354980", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5244260", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3805772", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR\u2013Cas9 nuclease off-targets", 
        "pagination": "607", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "97cee64dcedfc0cf1580ebd0cbf0e854d8db88c0c9ba7d9ab2536a6cf2ec5764"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28459458"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101215604"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.4278"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085099497"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.4278", 
          "https://app.dimensions.ai/details/publication/pub.1085099497"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nmeth.4278"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4278'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4278'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4278'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4278'


     

    This table displays all metadata directly associated to this object as RDF triples.

    312 TRIPLES      21 PREDICATES      82 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.4278 schema:about N01e2a76df1354eceb7458ff24ca29bf1
    2 N24a1c1f0387942e9be52684fcc6b872b
    3 N3b45650436a54741b10f94cc3d59c9b7
    4 N723f107864b3432981faeac3cb9e96d8
    5 N86931ff123c4484f82cec9de81a62913
    6 N8a92d773452d477eb3874effaa25f085
    7 N8ccf99e7525b4d828b8e6ba1e33dbf3b
    8 Nc6c23d95692a4675bab64ba4e77182c9
    9 Nd7e2eefe0e83457881967b1a6f18e7f4
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Nef2fd635e5784232827269ff8b34616a
    13 schema:citation sg:pub.10.1038/nature11247
    14 sg:pub.10.1038/nature13579
    15 sg:pub.10.1038/nature14299
    16 sg:pub.10.1038/nature15393
    17 sg:pub.10.1038/nature15544
    18 sg:pub.10.1038/nature16526
    19 sg:pub.10.1038/nbt.1948
    20 sg:pub.10.1038/nbt.2501
    21 sg:pub.10.1038/nbt.2673
    22 sg:pub.10.1038/nbt.2808
    23 sg:pub.10.1038/nbt.2842
    24 sg:pub.10.1038/nbt.3101
    25 sg:pub.10.1038/nbt.3117
    26 sg:pub.10.1038/nbt.3123
    27 sg:pub.10.1038/nbt.3390
    28 sg:pub.10.1038/ncomms6507
    29 sg:pub.10.1038/nm.3793
    30 sg:pub.10.1038/nmeth.2408
    31 sg:pub.10.1038/nmeth.2649
    32 sg:pub.10.1038/nmeth.3284
    33 sg:pub.10.1038/nmeth.3580
    34 sg:pub.10.1038/nmeth.3684
    35 sg:pub.10.1038/nrg.2016.28
    36 sg:pub.10.1038/protex.2017.147
    37 sg:pub.10.1186/2041-9414-3-9
    38 https://doi.org/10.1016/j.cell.2014.05.010
    39 https://doi.org/10.1016/j.febslet.2010.07.057
    40 https://doi.org/10.1038/mt.2016.10
    41 https://doi.org/10.1089/hum.2015.074
    42 https://doi.org/10.1093/bioinformatics/btp352
    43 https://doi.org/10.1093/bioinformatics/btp698
    44 https://doi.org/10.1093/bioinformatics/btr509
    45 https://doi.org/10.1093/nar/29.1.308
    46 https://doi.org/10.1101/gr.199588.115
    47 https://doi.org/10.1111/febs.13763
    48 https://doi.org/10.1126/science.1225829
    49 https://doi.org/10.1126/science.1231143
    50 https://doi.org/10.1126/science.1232033
    51 https://doi.org/10.1126/science.1258096
    52 https://doi.org/10.1128/mcb.14.12.8096
    53 https://doi.org/10.1146/annurev-genet-110410-132435
    54 https://doi.org/10.1146/annurev.genet.40.110405.090451
    55 https://doi.org/10.4161/rna.23764
    56 https://doi.org/10.7554/elife.00471
    57 schema:datePublished 2017-06
    58 schema:datePublishedReg 2017-06-01
    59 schema:description Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree true
    63 schema:isPartOf Nc0457f0f3b5e46e18629988b619bf52d
    64 Nfbe531c427a145afb64e414dfdfab8ba
    65 sg:journal.1033763
    66 schema:name CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets
    67 schema:pagination 607
    68 schema:productId N059a1a4483124baa9d92df50ea752390
    69 N81fb8ced562a4587bf3f6a3b3b9f7878
    70 N9b1fd925c85f4aceae4e11c62276381c
    71 Na43d532b853c4626925df6d1be19e9de
    72 Nc570773977fb45c992d17b644f887ae8
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085099497
    74 https://doi.org/10.1038/nmeth.4278
    75 schema:sdDatePublished 2019-04-11T12:27
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N6f98fed00edf46ea80c74baf6a72ced7
    78 schema:url https://www.nature.com/articles/nmeth.4278
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N01e2a76df1354eceb7458ff24ca29bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name CRISPR-Cas Systems
    84 rdf:type schema:DefinedTerm
    85 N059a1a4483124baa9d92df50ea752390 schema:name readcube_id
    86 schema:value 97cee64dcedfc0cf1580ebd0cbf0e854d8db88c0c9ba7d9ab2536a6cf2ec5764
    87 rdf:type schema:PropertyValue
    88 N0d94d5285e7940b7a026270bc0fd9b2d rdf:first sg:person.01237352710.05
    89 rdf:rest N745a7da8e55e4a98933af80cfd13989a
    90 N24a1c1f0387942e9be52684fcc6b872b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Chromosome Mapping
    92 rdf:type schema:DefinedTerm
    93 N3b45650436a54741b10f94cc3d59c9b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Reproducibility of Results
    95 rdf:type schema:DefinedTerm
    96 N6f98fed00edf46ea80c74baf6a72ced7 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N723f107864b3432981faeac3cb9e96d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Genome
    100 rdf:type schema:DefinedTerm
    101 N7444f761cfa347f3a88c0701d8440612 rdf:first sg:person.016375345523.34
    102 rdf:rest N0d94d5285e7940b7a026270bc0fd9b2d
    103 N745a7da8e55e4a98933af80cfd13989a rdf:first sg:person.0636535214.09
    104 rdf:rest N898ad53a2091474dbbe26075ab9cc927
    105 N81fb8ced562a4587bf3f6a3b3b9f7878 schema:name doi
    106 schema:value 10.1038/nmeth.4278
    107 rdf:type schema:PropertyValue
    108 N86931ff123c4484f82cec9de81a62913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Deoxyribonucleases
    110 rdf:type schema:DefinedTerm
    111 N898ad53a2091474dbbe26075ab9cc927 rdf:first sg:person.0667170477.75
    112 rdf:rest rdf:nil
    113 N8a92d773452d477eb3874effaa25f085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Sensitivity and Specificity
    115 rdf:type schema:DefinedTerm
    116 N8ccf99e7525b4d828b8e6ba1e33dbf3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Sequence Analysis, DNA
    118 rdf:type schema:DefinedTerm
    119 N9b1fd925c85f4aceae4e11c62276381c schema:name nlm_unique_id
    120 schema:value 101215604
    121 rdf:type schema:PropertyValue
    122 Na43d532b853c4626925df6d1be19e9de schema:name pubmed_id
    123 schema:value 28459458
    124 rdf:type schema:PropertyValue
    125 Nc0457f0f3b5e46e18629988b619bf52d schema:volumeNumber 14
    126 rdf:type schema:PublicationVolume
    127 Nc570773977fb45c992d17b644f887ae8 schema:name dimensions_id
    128 schema:value pub.1085099497
    129 rdf:type schema:PropertyValue
    130 Nc6c23d95692a4675bab64ba4e77182c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name High-Throughput Nucleotide Sequencing
    132 rdf:type schema:DefinedTerm
    133 Ncbbde3aa6379427ab409ce2b8a16bf08 rdf:first sg:person.01104421661.44
    134 rdf:rest N7444f761cfa347f3a88c0701d8440612
    135 Nd7e2eefe0e83457881967b1a6f18e7f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Clustered Regularly Interspaced Short Palindromic Repeats
    137 rdf:type schema:DefinedTerm
    138 Nef2fd635e5784232827269ff8b34616a rdf:first sg:person.0742101567.17
    139 rdf:rest Ncbbde3aa6379427ab409ce2b8a16bf08
    140 Nfbe531c427a145afb64e414dfdfab8ba schema:issueNumber 6
    141 rdf:type schema:PublicationIssue
    142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biological Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Genetics
    147 rdf:type schema:DefinedTerm
    148 sg:grant.2354980 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.4278
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.3805772 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.4278
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.5244260 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.4278
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1033763 schema:issn 1548-7091
    155 1548-7105
    156 schema:name Nature Methods
    157 rdf:type schema:Periodical
    158 sg:person.01104421661.44 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    159 schema:familyName Nguyen
    160 schema:givenName Nhu T
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104421661.44
    162 rdf:type schema:Person
    163 sg:person.01237352710.05 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    164 schema:familyName Topkar
    165 schema:givenName Ved V
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237352710.05
    167 rdf:type schema:Person
    168 sg:person.016375345523.34 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    169 schema:familyName Malagon-Lopez
    170 schema:givenName Jose
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016375345523.34
    172 rdf:type schema:Person
    173 sg:person.0636535214.09 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    174 schema:familyName Aryee
    175 schema:givenName Martin J
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09
    177 rdf:type schema:Person
    178 sg:person.0667170477.75 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    179 schema:familyName Joung
    180 schema:givenName J Keith
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170477.75
    182 rdf:type schema:Person
    183 sg:person.0742101567.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    184 schema:familyName Tsai
    185 schema:givenName Shengdar Q
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742101567.17
    187 rdf:type schema:Person
    188 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    189 https://doi.org/10.1038/nature11247
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
    192 https://doi.org/10.1038/nature13579
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature14299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168198
    195 https://doi.org/10.1038/nature14299
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
    198 https://doi.org/10.1038/nature15393
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature15544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311922
    201 https://doi.org/10.1038/nature15544
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature16526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010800066
    204 https://doi.org/10.1038/nature16526
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nbt.1948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698278
    207 https://doi.org/10.1038/nbt.1948
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nbt.2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024988605
    210 https://doi.org/10.1038/nbt.2501
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nbt.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302590
    213 https://doi.org/10.1038/nbt.2673
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nbt.2808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048637524
    216 https://doi.org/10.1038/nbt.2808
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nbt.2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520013
    219 https://doi.org/10.1038/nbt.2842
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nbt.3101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033919606
    222 https://doi.org/10.1038/nbt.3101
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nbt.3117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849416
    225 https://doi.org/10.1038/nbt.3117
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nbt.3123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000757158
    228 https://doi.org/10.1038/nbt.3123
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nbt.3390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303808
    231 https://doi.org/10.1038/nbt.3390
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ncomms6507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007457308
    234 https://doi.org/10.1038/ncomms6507
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nm.3793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052797737
    237 https://doi.org/10.1038/nm.3793
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nmeth.2408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011565053
    240 https://doi.org/10.1038/nmeth.2408
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmeth.2649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703730
    243 https://doi.org/10.1038/nmeth.2649
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmeth.3284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874827
    246 https://doi.org/10.1038/nmeth.3284
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nmeth.3580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028216230
    249 https://doi.org/10.1038/nmeth.3580
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nmeth.3684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001208933
    252 https://doi.org/10.1038/nmeth.3684
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nrg.2016.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010657174
    255 https://doi.org/10.1038/nrg.2016.28
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/protex.2017.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092599526
    258 https://doi.org/10.1038/protex.2017.147
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/2041-9414-3-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014227204
    261 https://doi.org/10.1186/2041-9414-3-9
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.cell.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182708
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.febslet.2010.07.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009333473
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1038/mt.2016.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050147590
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1089/hum.2015.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975645
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btr509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904685
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1101/gr.199588.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007997816
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1111/febs.13763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104583
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1126/science.1231143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873131
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.1258096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404992
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1128/mcb.14.12.8096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022051171
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1146/annurev-genet-110410-132435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038189748
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1146/annurev.genet.40.110405.090451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047236527
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.4161/rna.23764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310097
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.7554/elife.00471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023633935
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
    302 schema:name Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    303 Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    304 Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    305 rdf:type schema:Organization
    306 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    307 schema:name Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    308 Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    309 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
    310 Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
    311 Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    312 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...