cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Ali Punjani, John L Rubinstein, David J Fleet, Marcus A Brubaker

ABSTRACT

Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com). More... »

PAGES

290-296

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.4169

DOI

http://dx.doi.org/10.1038/nmeth.4169

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083686092

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28165473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphatases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoelectron Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "TRPV Cation Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermus thermophilus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Punjani", 
        "givenName": "Ali", 
        "id": "sg:person.0647354137.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647354137.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.", 
            "Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.", 
            "Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubinstein", 
        "givenName": "John L", 
        "id": "sg:person.01264020774.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264020774.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleet", 
        "givenName": "David J", 
        "id": "sg:person.01041531046.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041531046.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "York University", 
          "id": "https://www.grid.ac/institutes/grid.21100.32", 
          "name": [
            "Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brubaker", 
        "givenName": "Marcus A", 
        "id": "sg:person.01177134046.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177134046.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ultramic.2013.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000304364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-13-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007602764", 
          "https://doi.org/10.1186/1472-6807-13-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.18722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009291458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010948956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012962425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013190325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013567515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.14874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015763883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad7974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016247585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2006.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016378828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2604-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017229575", 
          "https://doi.org/10.1007/978-3-7908-2604-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018118608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019494270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2014.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021068336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.11182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023050774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.00461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025816106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2011.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026992984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027668804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1998.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029845583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1314449110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032917588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2013.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497523", 
          "https://doi.org/10.1038/nmeth.3806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389149", 
          "https://doi.org/10.1038/nature14365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041024070", 
          "https://doi.org/10.1038/nmeth.2115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf5316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041367102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1987.tb01333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042754340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042852549", 
          "https://doi.org/10.1038/nature12822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac7629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043702597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049111534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049504602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049510278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049802224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049802224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1521990113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049980808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2012.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2011.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052958331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.11.6.972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/protex.2017.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083776851", 
          "https://doi.org/10.1038/protex.2017.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094420674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094596172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095350163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.4169", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2889682", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination", 
    "pagination": "290-296", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4161a8ec42e764aba12ba68066a2bd40132e210f1bcd1147dc780dfaf4ea19d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28165473"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.4169"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083686092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.4169", 
      "https://app.dimensions.ai/details/publication/pub.1083686092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000427.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmeth/journal/v14/n3/full/nmeth.4169.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'


 

This table displays all metadata directly associated to this object as RDF triples.

294 TRIPLES      21 PREDICATES      87 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.4169 schema:about N1074e4b185da4101abad146d1b959448
2 N341b4f4dfb0846f09a19bcd2987644f6
3 N60c426d1d3d84c089e4a2beae3913a29
4 N7824fb769a1f40a0a8d8f9f9e47dffc5
5 N79209cfd0c27422f8ff21371747fbef3
6 N95540605878a4540895b5c1e83fe34c9
7 N9d604125b0c54f91be3753ae3c861c3a
8 Nac9bbbca83774f599d9adb6d7a5534ed
9 Nae8134f863b44442af2d05fb8fbc84e0
10 Nb73157e4d5234fdf9b1d45980118ce30
11 Nbbfb5a1bbf344df5bbb10906bfce17d2
12 Nd8b2a99a171d43a9ae79f28b6881f048
13 Ne5132edd2792479c85a515cc41154883
14 Nf2525bd32d4c4ff491a80bc0e4a93239
15 Nfac980eb08354f44abc72207481fac28
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author N5d348157ece0435881af1bc819c0de83
19 schema:citation sg:pub.10.1007/978-3-7908-2604-3_16
20 sg:pub.10.1038/nature12822
21 sg:pub.10.1038/nature14365
22 sg:pub.10.1038/nmeth.2115
23 sg:pub.10.1038/nmeth.3806
24 sg:pub.10.1038/protex.2017.009
25 sg:pub.10.1186/1472-6807-13-25
26 https://doi.org/10.1006/jsbi.1998.4014
27 https://doi.org/10.1016/j.jmb.2003.07.013
28 https://doi.org/10.1016/j.jmb.2011.11.010
29 https://doi.org/10.1016/j.jsb.2005.10.012
30 https://doi.org/10.1016/j.jsb.2006.05.004
31 https://doi.org/10.1016/j.jsb.2012.07.010
32 https://doi.org/10.1016/j.jsb.2014.02.016
33 https://doi.org/10.1016/j.jsb.2015.01.009
34 https://doi.org/10.1016/j.jsb.2015.03.009
35 https://doi.org/10.1016/j.jsb.2015.08.007
36 https://doi.org/10.1016/j.jsb.2015.11.003
37 https://doi.org/10.1016/j.str.2011.12.014
38 https://doi.org/10.1016/j.str.2013.04.016
39 https://doi.org/10.1016/j.str.2013.07.002
40 https://doi.org/10.1016/j.ultramic.2013.06.004
41 https://doi.org/10.1073/pnas.1314449110
42 https://doi.org/10.1073/pnas.1521990113
43 https://doi.org/10.1093/bioinformatics/btq456
44 https://doi.org/10.1109/cvpr.2015.7298929
45 https://doi.org/10.1109/iccv.2013.184
46 https://doi.org/10.1109/icip.2014.7025419
47 https://doi.org/10.1111/j.1365-2818.1987.tb01333.x
48 https://doi.org/10.1126/science.1251652
49 https://doi.org/10.1126/science.1256358
50 https://doi.org/10.1126/science.aac7629
51 https://doi.org/10.1126/science.aad7974
52 https://doi.org/10.1126/science.aaf5316
53 https://doi.org/10.1287/opre.11.6.972
54 https://doi.org/10.7554/elife.00461
55 https://doi.org/10.7554/elife.03080
56 https://doi.org/10.7554/elife.06380
57 https://doi.org/10.7554/elife.06664
58 https://doi.org/10.7554/elife.06980
59 https://doi.org/10.7554/elife.11182
60 https://doi.org/10.7554/elife.14874
61 https://doi.org/10.7554/elife.18722
62 schema:datePublished 2017-03
63 schema:datePublishedReg 2017-03-01
64 schema:description Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com).
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N7d2f9dd9609b40b3bf774a85a38cf4e4
69 N7e6c7533ce434696ab2b3f4901feccf2
70 sg:journal.1033763
71 schema:name cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
72 schema:pagination 290-296
73 schema:productId N1213de177a73488f8388fdb14c2c3380
74 N137808a6b6994ad1967aafbdddf0afc5
75 N6f25208740fd42aebc9de33282f433b6
76 N92b7bf908a4843deb154e1d116033712
77 Nada0f79b053641f2898b173dfd7224df
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
79 https://doi.org/10.1038/nmeth.4169
80 schema:sdDatePublished 2019-04-10T13:00
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N03ca00356e50463892b9ffaa30003e63
83 schema:url http://www.nature.com/nmeth/journal/v14/n3/full/nmeth.4169.html
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N02471759b65247cb9ec6ae4349f2e0cf rdf:first sg:person.01041531046.06
88 rdf:rest N17fcfa28b81145ecad138b4382213306
89 N03ca00356e50463892b9ffaa30003e63 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N1074e4b185da4101abad146d1b959448 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Adenosine Triphosphatases
93 rdf:type schema:DefinedTerm
94 N1213de177a73488f8388fdb14c2c3380 schema:name pubmed_id
95 schema:value 28165473
96 rdf:type schema:PropertyValue
97 N137808a6b6994ad1967aafbdddf0afc5 schema:name dimensions_id
98 schema:value pub.1083686092
99 rdf:type schema:PropertyValue
100 N17fcfa28b81145ecad138b4382213306 rdf:first sg:person.01177134046.51
101 rdf:rest rdf:nil
102 N341b4f4dfb0846f09a19bcd2987644f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Imaging, Three-Dimensional
104 rdf:type schema:DefinedTerm
105 N5b81541d50144d2cbde0bbc1b9dc117f rdf:first sg:person.01264020774.33
106 rdf:rest N02471759b65247cb9ec6ae4349f2e0cf
107 N5d348157ece0435881af1bc819c0de83 rdf:first sg:person.0647354137.03
108 rdf:rest N5b81541d50144d2cbde0bbc1b9dc117f
109 N60c426d1d3d84c089e4a2beae3913a29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Plasmodium falciparum
111 rdf:type schema:DefinedTerm
112 N6f25208740fd42aebc9de33282f433b6 schema:name readcube_id
113 schema:value c4161a8ec42e764aba12ba68066a2bd40132e210f1bcd1147dc780dfaf4ea19d
114 rdf:type schema:PropertyValue
115 N7824fb769a1f40a0a8d8f9f9e47dffc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Software
117 rdf:type schema:DefinedTerm
118 N79209cfd0c27422f8ff21371747fbef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name TRPV Cation Channels
120 rdf:type schema:DefinedTerm
121 N7d2f9dd9609b40b3bf774a85a38cf4e4 schema:volumeNumber 14
122 rdf:type schema:PublicationVolume
123 N7e6c7533ce434696ab2b3f4901feccf2 schema:issueNumber 3
124 rdf:type schema:PublicationIssue
125 N92b7bf908a4843deb154e1d116033712 schema:name nlm_unique_id
126 schema:value 101215604
127 rdf:type schema:PropertyValue
128 N95540605878a4540895b5c1e83fe34c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Ribosomes
130 rdf:type schema:DefinedTerm
131 N9d604125b0c54f91be3753ae3c861c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Thermus thermophilus
133 rdf:type schema:DefinedTerm
134 Nac9bbbca83774f599d9adb6d7a5534ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Image Processing, Computer-Assisted
136 rdf:type schema:DefinedTerm
137 Nada0f79b053641f2898b173dfd7224df schema:name doi
138 schema:value 10.1038/nmeth.4169
139 rdf:type schema:PropertyValue
140 Nae8134f863b44442af2d05fb8fbc84e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Rats
142 rdf:type schema:DefinedTerm
143 Nb73157e4d5234fdf9b1d45980118ce30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Computational Biology
145 rdf:type schema:DefinedTerm
146 Nbbfb5a1bbf344df5bbb10906bfce17d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Algorithms
148 rdf:type schema:DefinedTerm
149 Nd8b2a99a171d43a9ae79f28b6881f048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Bayes Theorem
151 rdf:type schema:DefinedTerm
152 Ne5132edd2792479c85a515cc41154883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Animals
154 rdf:type schema:DefinedTerm
155 Nf2525bd32d4c4ff491a80bc0e4a93239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Cryoelectron Microscopy
157 rdf:type schema:DefinedTerm
158 Nfac980eb08354f44abc72207481fac28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Models, Molecular
160 rdf:type schema:DefinedTerm
161 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
162 schema:name Information and Computing Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
165 schema:name Artificial Intelligence and Image Processing
166 rdf:type schema:DefinedTerm
167 sg:grant.2889682 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.4169
168 rdf:type schema:MonetaryGrant
169 sg:journal.1033763 schema:issn 1548-7091
170 1548-7105
171 schema:name Nature Methods
172 rdf:type schema:Periodical
173 sg:person.01041531046.06 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
174 schema:familyName Fleet
175 schema:givenName David J
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041531046.06
177 rdf:type schema:Person
178 sg:person.01177134046.51 schema:affiliation https://www.grid.ac/institutes/grid.21100.32
179 schema:familyName Brubaker
180 schema:givenName Marcus A
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177134046.51
182 rdf:type schema:Person
183 sg:person.01264020774.33 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
184 schema:familyName Rubinstein
185 schema:givenName John L
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264020774.33
187 rdf:type schema:Person
188 sg:person.0647354137.03 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
189 schema:familyName Punjani
190 schema:givenName Ali
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647354137.03
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-7908-2604-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017229575
194 https://doi.org/10.1007/978-3-7908-2604-3_16
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature12822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042852549
197 https://doi.org/10.1038/nature12822
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature14365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389149
200 https://doi.org/10.1038/nature14365
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041024070
203 https://doi.org/10.1038/nmeth.2115
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmeth.3806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497523
206 https://doi.org/10.1038/nmeth.3806
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/protex.2017.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776851
209 https://doi.org/10.1038/protex.2017.009
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1472-6807-13-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007602764
212 https://doi.org/10.1186/1472-6807-13-25
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1006/jsbi.1998.4014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029845583
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.jmb.2003.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049802224
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jmb.2011.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052958331
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jsb.2005.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012962425
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.jsb.2006.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016378828
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.jsb.2012.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656941
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.jsb.2014.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021068336
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.jsb.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049111534
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.jsb.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027668804
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.jsb.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018118608
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.jsb.2015.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049504602
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.str.2011.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026992984
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.str.2013.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534577
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.str.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013567515
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ultramic.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000304364
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.1314449110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917588
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.1521990113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049980808
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/bioinformatics/btq456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049510278
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/cvpr.2015.7298929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095350163
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/iccv.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420674
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/icip.2014.7025419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094596172
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1365-2818.1987.tb01333.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042754340
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1251652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494270
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.1256358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470125
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.aac7629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043702597
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.aad7974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247585
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.aaf5316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041367102
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1287/opre.11.6.972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726361
269 rdf:type schema:CreativeWork
270 https://doi.org/10.7554/elife.00461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025816106
271 rdf:type schema:CreativeWork
272 https://doi.org/10.7554/elife.03080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558561
273 rdf:type schema:CreativeWork
274 https://doi.org/10.7554/elife.06380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074094
275 rdf:type schema:CreativeWork
276 https://doi.org/10.7554/elife.06664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013190325
277 rdf:type schema:CreativeWork
278 https://doi.org/10.7554/elife.06980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948956
279 rdf:type schema:CreativeWork
280 https://doi.org/10.7554/elife.11182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023050774
281 rdf:type schema:CreativeWork
282 https://doi.org/10.7554/elife.14874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015763883
283 rdf:type schema:CreativeWork
284 https://doi.org/10.7554/elife.18722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009291458
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
287 schema:name Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
288 Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada.
289 Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada.
290 Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.21100.32 schema:alternateName York University
293 schema:name Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada.
294 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...