cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Ali Punjani, John L Rubinstein, David J Fleet, Marcus A Brubaker

ABSTRACT

Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com). More... »

PAGES

290-296

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.4169

DOI

http://dx.doi.org/10.1038/nmeth.4169

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083686092

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28165473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphatases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoelectron Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "TRPV Cation Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermus thermophilus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Punjani", 
        "givenName": "Ali", 
        "id": "sg:person.0647354137.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647354137.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.", 
            "Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.", 
            "Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubinstein", 
        "givenName": "John L", 
        "id": "sg:person.01264020774.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264020774.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleet", 
        "givenName": "David J", 
        "id": "sg:person.01041531046.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041531046.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "York University", 
          "id": "https://www.grid.ac/institutes/grid.21100.32", 
          "name": [
            "Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brubaker", 
        "givenName": "Marcus A", 
        "id": "sg:person.01177134046.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177134046.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ultramic.2013.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000304364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-13-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007602764", 
          "https://doi.org/10.1186/1472-6807-13-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.18722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009291458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010948956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012962425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013190325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013567515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.14874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015763883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad7974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016247585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2006.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016378828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2604-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017229575", 
          "https://doi.org/10.1007/978-3-7908-2604-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018118608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019494270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2014.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021068336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.11182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023050774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.00461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025816106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2011.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026992984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027668804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1998.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029845583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1314449110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032917588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2013.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.06380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497523", 
          "https://doi.org/10.1038/nmeth.3806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389149", 
          "https://doi.org/10.1038/nature14365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041024070", 
          "https://doi.org/10.1038/nmeth.2115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf5316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041367102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1987.tb01333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042754340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042852549", 
          "https://doi.org/10.1038/nature12822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac7629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043702597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049111534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2015.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049504602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049510278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049802224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049802224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1521990113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049980808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2012.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2011.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052958331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.11.6.972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/protex.2017.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083776851", 
          "https://doi.org/10.1038/protex.2017.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094420674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094596172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095350163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.4169", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2889682", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination", 
    "pagination": "290-296", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4161a8ec42e764aba12ba68066a2bd40132e210f1bcd1147dc780dfaf4ea19d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28165473"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.4169"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083686092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.4169", 
      "https://app.dimensions.ai/details/publication/pub.1083686092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000427.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmeth/journal/v14/n3/full/nmeth.4169.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.4169'


 

This table displays all metadata directly associated to this object as RDF triples.

294 TRIPLES      21 PREDICATES      87 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.4169 schema:about N047f796edc4044e284bb042720411895
2 N2afacce49dcc4e56b42b3ca78d26beaf
3 N38d2f1eb284946488c1c1c9a38456060
4 N4b5f18b52cbb40049f2153fbc2dbf229
5 N54cb2c1e306f43d0b4070b36c8cfe627
6 N5940f239cfbc48a1980ea8f85b3c2070
7 N5cd0f68a2e5448cb9c02cc0657bcfc42
8 N6d71a6e314884bc2b64041151d3da1d2
9 N73262bbd1d984683a53afa73540445e4
10 N94ebfe80bb55456fa0191f7c2f8ff78e
11 Na22371d111584e099caf0a24f41b05e7
12 Na58f45cf820648ee81003957e6aecb64
13 Nb987c7c26e6f442b88db66a4369690f9
14 Nc51fbb2591d3487b8a44140c9fcb0ef8
15 Nc5238c760b4142889fd4d33856900fce
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author N55de58786451423c9dbfec8d3e845492
19 schema:citation sg:pub.10.1007/978-3-7908-2604-3_16
20 sg:pub.10.1038/nature12822
21 sg:pub.10.1038/nature14365
22 sg:pub.10.1038/nmeth.2115
23 sg:pub.10.1038/nmeth.3806
24 sg:pub.10.1038/protex.2017.009
25 sg:pub.10.1186/1472-6807-13-25
26 https://doi.org/10.1006/jsbi.1998.4014
27 https://doi.org/10.1016/j.jmb.2003.07.013
28 https://doi.org/10.1016/j.jmb.2011.11.010
29 https://doi.org/10.1016/j.jsb.2005.10.012
30 https://doi.org/10.1016/j.jsb.2006.05.004
31 https://doi.org/10.1016/j.jsb.2012.07.010
32 https://doi.org/10.1016/j.jsb.2014.02.016
33 https://doi.org/10.1016/j.jsb.2015.01.009
34 https://doi.org/10.1016/j.jsb.2015.03.009
35 https://doi.org/10.1016/j.jsb.2015.08.007
36 https://doi.org/10.1016/j.jsb.2015.11.003
37 https://doi.org/10.1016/j.str.2011.12.014
38 https://doi.org/10.1016/j.str.2013.04.016
39 https://doi.org/10.1016/j.str.2013.07.002
40 https://doi.org/10.1016/j.ultramic.2013.06.004
41 https://doi.org/10.1073/pnas.1314449110
42 https://doi.org/10.1073/pnas.1521990113
43 https://doi.org/10.1093/bioinformatics/btq456
44 https://doi.org/10.1109/cvpr.2015.7298929
45 https://doi.org/10.1109/iccv.2013.184
46 https://doi.org/10.1109/icip.2014.7025419
47 https://doi.org/10.1111/j.1365-2818.1987.tb01333.x
48 https://doi.org/10.1126/science.1251652
49 https://doi.org/10.1126/science.1256358
50 https://doi.org/10.1126/science.aac7629
51 https://doi.org/10.1126/science.aad7974
52 https://doi.org/10.1126/science.aaf5316
53 https://doi.org/10.1287/opre.11.6.972
54 https://doi.org/10.7554/elife.00461
55 https://doi.org/10.7554/elife.03080
56 https://doi.org/10.7554/elife.06380
57 https://doi.org/10.7554/elife.06664
58 https://doi.org/10.7554/elife.06980
59 https://doi.org/10.7554/elife.11182
60 https://doi.org/10.7554/elife.14874
61 https://doi.org/10.7554/elife.18722
62 schema:datePublished 2017-03
63 schema:datePublishedReg 2017-03-01
64 schema:description Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com).
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N697edea1cc2944a1b9f080b174d0660f
69 Nee6b71cc1a554927b3a7f605223475e3
70 sg:journal.1033763
71 schema:name cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
72 schema:pagination 290-296
73 schema:productId N098cdf3821df482eb0982dede42163e4
74 N4945d42f4efe4664a0ad480f1c3df701
75 N4d2b7580a2a44bd18a2c159966c7b8db
76 N704428063dc7432abb44de4d597cab4c
77 Ne3fd4276b5d543aca6304320ee0f4e36
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
79 https://doi.org/10.1038/nmeth.4169
80 schema:sdDatePublished 2019-04-10T13:00
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N2d3f1653714845b4a7f7bd5f19c05651
83 schema:url http://www.nature.com/nmeth/journal/v14/n3/full/nmeth.4169.html
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N047f796edc4044e284bb042720411895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Plasmodium falciparum
89 rdf:type schema:DefinedTerm
90 N098cdf3821df482eb0982dede42163e4 schema:name doi
91 schema:value 10.1038/nmeth.4169
92 rdf:type schema:PropertyValue
93 N2afacce49dcc4e56b42b3ca78d26beaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Algorithms
95 rdf:type schema:DefinedTerm
96 N2d3f1653714845b4a7f7bd5f19c05651 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N33378fccf37442d3bc81a8c2315da2da rdf:first sg:person.01264020774.33
99 rdf:rest N4fa569875b5043c48d56622d96cc2733
100 N38d2f1eb284946488c1c1c9a38456060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Software
102 rdf:type schema:DefinedTerm
103 N4945d42f4efe4664a0ad480f1c3df701 schema:name dimensions_id
104 schema:value pub.1083686092
105 rdf:type schema:PropertyValue
106 N4b5f18b52cbb40049f2153fbc2dbf229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Adenosine Triphosphatases
108 rdf:type schema:DefinedTerm
109 N4d2b7580a2a44bd18a2c159966c7b8db schema:name readcube_id
110 schema:value c4161a8ec42e764aba12ba68066a2bd40132e210f1bcd1147dc780dfaf4ea19d
111 rdf:type schema:PropertyValue
112 N4fa569875b5043c48d56622d96cc2733 rdf:first sg:person.01041531046.06
113 rdf:rest N63dbfd9e68d445808585f29926e460d5
114 N54cb2c1e306f43d0b4070b36c8cfe627 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Molecular
116 rdf:type schema:DefinedTerm
117 N55de58786451423c9dbfec8d3e845492 rdf:first sg:person.0647354137.03
118 rdf:rest N33378fccf37442d3bc81a8c2315da2da
119 N5940f239cfbc48a1980ea8f85b3c2070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Animals
121 rdf:type schema:DefinedTerm
122 N5cd0f68a2e5448cb9c02cc0657bcfc42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Cryoelectron Microscopy
124 rdf:type schema:DefinedTerm
125 N63dbfd9e68d445808585f29926e460d5 rdf:first sg:person.01177134046.51
126 rdf:rest rdf:nil
127 N697edea1cc2944a1b9f080b174d0660f schema:volumeNumber 14
128 rdf:type schema:PublicationVolume
129 N6d71a6e314884bc2b64041151d3da1d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Image Processing, Computer-Assisted
131 rdf:type schema:DefinedTerm
132 N704428063dc7432abb44de4d597cab4c schema:name pubmed_id
133 schema:value 28165473
134 rdf:type schema:PropertyValue
135 N73262bbd1d984683a53afa73540445e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Rats
137 rdf:type schema:DefinedTerm
138 N94ebfe80bb55456fa0191f7c2f8ff78e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Computational Biology
140 rdf:type schema:DefinedTerm
141 Na22371d111584e099caf0a24f41b05e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Ribosomes
143 rdf:type schema:DefinedTerm
144 Na58f45cf820648ee81003957e6aecb64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Imaging, Three-Dimensional
146 rdf:type schema:DefinedTerm
147 Nb987c7c26e6f442b88db66a4369690f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name TRPV Cation Channels
149 rdf:type schema:DefinedTerm
150 Nc51fbb2591d3487b8a44140c9fcb0ef8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Thermus thermophilus
152 rdf:type schema:DefinedTerm
153 Nc5238c760b4142889fd4d33856900fce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Bayes Theorem
155 rdf:type schema:DefinedTerm
156 Ne3fd4276b5d543aca6304320ee0f4e36 schema:name nlm_unique_id
157 schema:value 101215604
158 rdf:type schema:PropertyValue
159 Nee6b71cc1a554927b3a7f605223475e3 schema:issueNumber 3
160 rdf:type schema:PublicationIssue
161 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
162 schema:name Information and Computing Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
165 schema:name Artificial Intelligence and Image Processing
166 rdf:type schema:DefinedTerm
167 sg:grant.2889682 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.4169
168 rdf:type schema:MonetaryGrant
169 sg:journal.1033763 schema:issn 1548-7091
170 1548-7105
171 schema:name Nature Methods
172 rdf:type schema:Periodical
173 sg:person.01041531046.06 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
174 schema:familyName Fleet
175 schema:givenName David J
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041531046.06
177 rdf:type schema:Person
178 sg:person.01177134046.51 schema:affiliation https://www.grid.ac/institutes/grid.21100.32
179 schema:familyName Brubaker
180 schema:givenName Marcus A
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177134046.51
182 rdf:type schema:Person
183 sg:person.01264020774.33 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
184 schema:familyName Rubinstein
185 schema:givenName John L
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264020774.33
187 rdf:type schema:Person
188 sg:person.0647354137.03 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
189 schema:familyName Punjani
190 schema:givenName Ali
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647354137.03
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-7908-2604-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017229575
194 https://doi.org/10.1007/978-3-7908-2604-3_16
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature12822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042852549
197 https://doi.org/10.1038/nature12822
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature14365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389149
200 https://doi.org/10.1038/nature14365
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041024070
203 https://doi.org/10.1038/nmeth.2115
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmeth.3806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497523
206 https://doi.org/10.1038/nmeth.3806
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/protex.2017.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776851
209 https://doi.org/10.1038/protex.2017.009
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1472-6807-13-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007602764
212 https://doi.org/10.1186/1472-6807-13-25
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1006/jsbi.1998.4014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029845583
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.jmb.2003.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049802224
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jmb.2011.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052958331
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jsb.2005.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012962425
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.jsb.2006.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016378828
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.jsb.2012.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656941
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.jsb.2014.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021068336
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.jsb.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049111534
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.jsb.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027668804
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.jsb.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018118608
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.jsb.2015.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049504602
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.str.2011.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026992984
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.str.2013.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534577
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.str.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013567515
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ultramic.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000304364
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.1314449110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917588
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.1521990113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049980808
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/bioinformatics/btq456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049510278
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/cvpr.2015.7298929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095350163
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/iccv.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420674
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/icip.2014.7025419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094596172
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1365-2818.1987.tb01333.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042754340
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1251652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494270
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.1256358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470125
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.aac7629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043702597
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.aad7974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247585
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.aaf5316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041367102
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1287/opre.11.6.972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726361
269 rdf:type schema:CreativeWork
270 https://doi.org/10.7554/elife.00461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025816106
271 rdf:type schema:CreativeWork
272 https://doi.org/10.7554/elife.03080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558561
273 rdf:type schema:CreativeWork
274 https://doi.org/10.7554/elife.06380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074094
275 rdf:type schema:CreativeWork
276 https://doi.org/10.7554/elife.06664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013190325
277 rdf:type schema:CreativeWork
278 https://doi.org/10.7554/elife.06980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948956
279 rdf:type schema:CreativeWork
280 https://doi.org/10.7554/elife.11182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023050774
281 rdf:type schema:CreativeWork
282 https://doi.org/10.7554/elife.14874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015763883
283 rdf:type schema:CreativeWork
284 https://doi.org/10.7554/elife.18722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009291458
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
287 schema:name Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
288 Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada.
289 Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada.
290 Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.21100.32 schema:alternateName York University
293 schema:name Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada.
294 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...