Diving deeper to predict noncoding sequence function View Full Text


Ontology type: schema:ScholarlyArticle     

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.3604

DOI

http://dx.doi.org/10.1038/nmeth.3604

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028513941

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26418766


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Computer Science, Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engelhardt", 
        "givenName": "Barbara E", 
        "id": "sg:person.01115600713.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115600713.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Christopher D", 
        "id": "sg:person.01322011560.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322011560.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000162505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000331042", 
          "https://doi.org/10.1038/nmeth.3547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3577405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014343625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018419161", 
          "https://doi.org/10.1038/ng.2826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022158752", 
          "https://doi.org/10.1038/nature12787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065430", 
          "https://doi.org/10.1038/nature11247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031836937", 
          "https://doi.org/10.1038/nature14248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033047665", 
          "https://doi.org/10.1038/ng.3331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034264039", 
          "https://doi.org/10.1038/ng.3196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044559969", 
          "https://doi.org/10.1038/nbt.2136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045762659", 
          "https://doi.org/10.1038/nmeth.2832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3715005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048048079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050728268", 
          "https://doi.org/10.1038/ng.2892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/nmeth.3604", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Diving deeper to predict noncoding sequence function", 
    "pagination": "925-926", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87d4fd3865e77be009da422e9970101bf5b206f5767ebcccf41adf73dfe4741e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26418766"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.3604"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028513941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.3604", 
      "https://app.dimensions.ai/details/publication/pub.1028513941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmeth/journal/v12/n10/full/nmeth.3604.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3604'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3604'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3604'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3604'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      19 PREDICATES      40 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.3604 schema:author N6bd7de8a1d0a487bacbb3307e85c3a31
2 schema:citation sg:pub.10.1038/nature11247
3 sg:pub.10.1038/nature12787
4 sg:pub.10.1038/nature14248
5 sg:pub.10.1038/nbt.2136
6 sg:pub.10.1038/ng.2826
7 sg:pub.10.1038/ng.2892
8 sg:pub.10.1038/ng.3196
9 sg:pub.10.1038/ng.3331
10 sg:pub.10.1038/nmeth.2832
11 sg:pub.10.1038/nmeth.3547
12 https://doi.org/10.1016/j.ajhg.2014.03.004
13 https://doi.org/10.1017/cbo9780511623486
14 https://doi.org/10.1101/gr.3577405
15 https://doi.org/10.1101/gr.3715005
16 schema:datePublished 2015-10
17 schema:datePublishedReg 2015-10-01
18 schema:genre non_research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb3cac9db5994415f9d789ca13c399bb5
22 Nf5507e577d4a4a50849f1b16e621b068
23 sg:journal.1033763
24 schema:name Diving deeper to predict noncoding sequence function
25 schema:pagination 925-926
26 schema:productId N1b061abc58824a2ea3da7e1e88e2597d
27 N226d6557bf404c068f66508c7740c768
28 N9e54ea9acc754b358ea48dc32fdbe89c
29 N9f5108fcc9e64d3890e69b14d3bb4250
30 Nfd88e4f21b2744b2940b2f32cae4cc44
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028513941
32 https://doi.org/10.1038/nmeth.3604
33 schema:sdDatePublished 2019-04-10T16:29
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9eac80ef975d4f719329bcc95d027718
36 schema:url http://www.nature.com/nmeth/journal/v12/n10/full/nmeth.3604.html
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1b061abc58824a2ea3da7e1e88e2597d schema:name pubmed_id
41 schema:value 26418766
42 rdf:type schema:PropertyValue
43 N226d6557bf404c068f66508c7740c768 schema:name readcube_id
44 schema:value 87d4fd3865e77be009da422e9970101bf5b206f5767ebcccf41adf73dfe4741e
45 rdf:type schema:PropertyValue
46 N6bd7de8a1d0a487bacbb3307e85c3a31 rdf:first sg:person.01115600713.39
47 rdf:rest Nccf59a5cdc7942fe95bdd4a3e9f823de
48 N9e54ea9acc754b358ea48dc32fdbe89c schema:name dimensions_id
49 schema:value pub.1028513941
50 rdf:type schema:PropertyValue
51 N9eac80ef975d4f719329bcc95d027718 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N9f5108fcc9e64d3890e69b14d3bb4250 schema:name doi
54 schema:value 10.1038/nmeth.3604
55 rdf:type schema:PropertyValue
56 Nb3cac9db5994415f9d789ca13c399bb5 schema:volumeNumber 12
57 rdf:type schema:PublicationVolume
58 Nccf59a5cdc7942fe95bdd4a3e9f823de rdf:first sg:person.01322011560.52
59 rdf:rest rdf:nil
60 Nf5507e577d4a4a50849f1b16e621b068 schema:issueNumber 10
61 rdf:type schema:PublicationIssue
62 Nfd88e4f21b2744b2940b2f32cae4cc44 schema:name nlm_unique_id
63 schema:value 101215604
64 rdf:type schema:PropertyValue
65 sg:journal.1033763 schema:issn 1548-7091
66 1548-7105
67 schema:name Nature Methods
68 rdf:type schema:Periodical
69 sg:person.01115600713.39 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
70 schema:familyName Engelhardt
71 schema:givenName Barbara E
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115600713.39
73 rdf:type schema:Person
74 sg:person.01322011560.52 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
75 schema:familyName Brown
76 schema:givenName Christopher D
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322011560.52
78 rdf:type schema:Person
79 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
80 https://doi.org/10.1038/nature11247
81 rdf:type schema:CreativeWork
82 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
83 https://doi.org/10.1038/nature12787
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/nature14248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031836937
86 https://doi.org/10.1038/nature14248
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/nbt.2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559969
89 https://doi.org/10.1038/nbt.2136
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/ng.2826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018419161
92 https://doi.org/10.1038/ng.2826
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/ng.2892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050728268
95 https://doi.org/10.1038/ng.2892
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/ng.3196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034264039
98 https://doi.org/10.1038/ng.3196
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/ng.3331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033047665
101 https://doi.org/10.1038/ng.3331
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nmeth.2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045762659
104 https://doi.org/10.1038/nmeth.2832
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nmeth.3547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331042
107 https://doi.org/10.1038/nmeth.3547
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ajhg.2014.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000162505
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/cbo9780511623486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709897
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1101/gr.3577405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343625
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
118 schema:name Department of Computer Science, Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey, USA.
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
121 schema:name Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...