Phenolyzer: phenotype-based prioritization of candidate genes for human diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Hui Yang, Peter N Robinson, Kai Wang

ABSTRACT

Prior biological knowledge and phenotype information may help to identify disease genes from human whole-genome and whole-exome sequencing studies. We developed Phenolyzer (http://phenolyzer.usc.edu), a tool that uses prior information to implicate genes involved in diseases. Phenolyzer exhibits superior performance over competing methods for prioritizing Mendelian and complex disease genes, based on disease or phenotype terms entered as free text. More... »

PAGES

841-843

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.3484

DOI

http://dx.doi.org/10.1038/nmeth.3484

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042717330

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26192085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Diseases, Inborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.", 
            "Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hui", 
        "id": "sg:person.01017141127.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017141127.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Freie Universit\u00e4t Berlin", 
          "id": "https://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Institute for Medical and Human Genetics, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany.", 
            "Max Planck Institute for Molecular Genetics, Berlin, Germany.", 
            "Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany.", 
            "Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universit\u00e4t Berlin, Berlin, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Peter N", 
        "id": "sg:person.010757253652.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757253652.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.", 
            "Department of Psychiatry, University of Southern California, Los Angeles, California, USA.", 
            "Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kai", 
        "id": "sg:person.01330423671.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330423671.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/jmedgenet-2012-100918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000804270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001009858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001618586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001826873", 
          "https://doi.org/10.1038/nature11677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bar065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005486377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bau090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006976326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008228824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008763878", 
          "https://doi.org/10.1186/1471-2105-7-166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010678848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012036228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012078987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013151169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3004041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017246217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023280984", 
          "https://doi.org/10.1186/gm359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-10-76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024764854", 
          "https://doi.org/10.1186/1472-6947-10-76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343689", 
          "https://doi.org/10.1038/nbt1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343689", 
          "https://doi.org/10.1038/nbt1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025489983", 
          "https://doi.org/10.1186/1471-2164-13-405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025655216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035429197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037222040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-0004.2010.01436.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039625906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041044240", 
          "https://doi.org/10.1038/nature13772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041900698", 
          "https://doi.org/10.1038/nmeth.3046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043902215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/fly.19695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047038706", 
          "https://doi.org/10.1038/nrg3031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047117020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/baq020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.160325.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049848861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050139556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "Prior biological knowledge and phenotype information may help to identify disease genes from human whole-genome and whole-exome sequencing studies. We developed Phenolyzer (http://phenolyzer.usc.edu), a tool that uses prior information to implicate genes involved in diseases. Phenolyzer exhibits superior performance over competing methods for prioritizing Mendelian and complex disease genes, based on disease or phenotype terms entered as free text. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.3484", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Phenolyzer: phenotype-based prioritization of candidate genes for human diseases", 
    "pagination": "841-843", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb7ae12aa98b3fb747085b584426dcd9ca0543906ed2e6d1c56bc917466afc62"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26192085"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.3484"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042717330"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.3484", 
      "https://app.dimensions.ai/details/publication/pub.1042717330"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmeth/journal/v12/n9/full/nmeth.3484.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3484'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3484'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3484'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.3484'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      80 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.3484 schema:about N3c962863d27d4241aa1436083bbdea75
2 N4e4c725ae951481f9f4a0cd46a82673b
3 N5e8f27b271774ab2a3cd0c004fec2d34
4 N6fac7b7628864d58ab117e7d28bc07ef
5 N7a259a2fdcf44ff6a32d265e548ea401
6 N9a75f0ab8b9a41b1ae4c64a62673e70e
7 Na0913260874a4ec5a09df651b8f668ee
8 Na669a302985c45409232947ff2287f4f
9 Nb4e18efea7b54aba8e1ea5b2b408c617
10 Nb6a8e667ddf34d23a0947f62ebc6cc2b
11 Nb8f4172662e04322b981dc5bb5d55142
12 Nd28e41555a284817a339f9fb3cfc5949
13 Nf0879b7c4c814c72be3c03cab389ad58
14 Nf10d11a299a94446bea8adb439854052
15 Nf836b0ae6190448a976c443199ab149c
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N7c1230f32a6847098cafaae2886ad700
19 schema:citation sg:pub.10.1038/nature11677
20 sg:pub.10.1038/nature13772
21 sg:pub.10.1038/nbt1203
22 sg:pub.10.1038/nmeth.3046
23 sg:pub.10.1038/nrg3031
24 sg:pub.10.1186/1471-2105-7-166
25 sg:pub.10.1186/1471-2164-13-405
26 sg:pub.10.1186/1472-6947-10-76
27 sg:pub.10.1186/gm359
28 https://doi.org/10.1002/humu.21466
29 https://doi.org/10.1002/humu.22078
30 https://doi.org/10.1002/humu.22531
31 https://doi.org/10.1016/j.ajhg.2009.09.003
32 https://doi.org/10.1016/j.ajhg.2012.11.004
33 https://doi.org/10.1016/j.ajhg.2014.03.010
34 https://doi.org/10.1093/bioinformatics/btq330
35 https://doi.org/10.1093/bioinformatics/btq384
36 https://doi.org/10.1093/bioinformatics/bts368
37 https://doi.org/10.1093/database/baq020
38 https://doi.org/10.1093/database/bar065
39 https://doi.org/10.1093/database/bau090
40 https://doi.org/10.1093/nar/gkh070
41 https://doi.org/10.1093/nar/gkp858
42 https://doi.org/10.1093/nar/gkq1106
43 https://doi.org/10.1093/nar/gkq603
44 https://doi.org/10.1093/nar/gkq892
45 https://doi.org/10.1093/nar/gkq912
46 https://doi.org/10.1093/nar/gkq929
47 https://doi.org/10.1093/nar/gkr972
48 https://doi.org/10.1093/nar/gkt1113
49 https://doi.org/10.1093/nar/gkt474
50 https://doi.org/10.1101/gr.160325.113
51 https://doi.org/10.1111/j.1399-0004.2010.01436.x
52 https://doi.org/10.1126/scitranslmed.3004041
53 https://doi.org/10.1136/jmedgenet-2012-100918
54 https://doi.org/10.4161/fly.19695
55 schema:datePublished 2015-09
56 schema:datePublishedReg 2015-09-01
57 schema:description Prior biological knowledge and phenotype information may help to identify disease genes from human whole-genome and whole-exome sequencing studies. We developed Phenolyzer (http://phenolyzer.usc.edu), a tool that uses prior information to implicate genes involved in diseases. Phenolyzer exhibits superior performance over competing methods for prioritizing Mendelian and complex disease genes, based on disease or phenotype terms entered as free text.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N80b7ddcaaf0847699b6456f6475c4511
62 N90a7ee7aa2df4f419fe10760fbeffbd4
63 sg:journal.1033763
64 schema:name Phenolyzer: phenotype-based prioritization of candidate genes for human diseases
65 schema:pagination 841-843
66 schema:productId N28a4c341540a4a94a84f998c72fb6cbd
67 N4c1b702dc1ef4e1ebcc2715141399d07
68 N54a1f37aae784ff4aec9c5d9aec518e5
69 N6609d894ba694af0ac9c2569e307a6d5
70 N8d2fc328e71649d5ab8d06daceafc2c4
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042717330
72 https://doi.org/10.1038/nmeth.3484
73 schema:sdDatePublished 2019-04-10T16:29
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Na3620a3756ea42ba9e2a1fa025be62ab
76 schema:url http://www.nature.com/nmeth/journal/v12/n9/full/nmeth.3484.html
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N02edead9ff474794854d676cf655a3ce rdf:first sg:person.01330423671.56
81 rdf:rest rdf:nil
82 N28a4c341540a4a94a84f998c72fb6cbd schema:name pubmed_id
83 schema:value 26192085
84 rdf:type schema:PropertyValue
85 N3c962863d27d4241aa1436083bbdea75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genetic Predisposition to Disease
87 rdf:type schema:DefinedTerm
88 N4c1b702dc1ef4e1ebcc2715141399d07 schema:name dimensions_id
89 schema:value pub.1042717330
90 rdf:type schema:PropertyValue
91 N4e4c725ae951481f9f4a0cd46a82673b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genetic Markers
93 rdf:type schema:DefinedTerm
94 N54a1f37aae784ff4aec9c5d9aec518e5 schema:name doi
95 schema:value 10.1038/nmeth.3484
96 rdf:type schema:PropertyValue
97 N5e8f27b271774ab2a3cd0c004fec2d34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Base Sequence
99 rdf:type schema:DefinedTerm
100 N6609d894ba694af0ac9c2569e307a6d5 schema:name nlm_unique_id
101 schema:value 101215604
102 rdf:type schema:PropertyValue
103 N6fac7b7628864d58ab117e7d28bc07ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Chromosome Mapping
105 rdf:type schema:DefinedTerm
106 N7a259a2fdcf44ff6a32d265e548ea401 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Algorithms
108 rdf:type schema:DefinedTerm
109 N7c1230f32a6847098cafaae2886ad700 rdf:first sg:person.01017141127.73
110 rdf:rest Nc483641b9dab4113934cad578db2f3e3
111 N80b7ddcaaf0847699b6456f6475c4511 schema:volumeNumber 12
112 rdf:type schema:PublicationVolume
113 N8d2fc328e71649d5ab8d06daceafc2c4 schema:name readcube_id
114 schema:value cb7ae12aa98b3fb747085b584426dcd9ca0543906ed2e6d1c56bc917466afc62
115 rdf:type schema:PropertyValue
116 N90a7ee7aa2df4f419fe10760fbeffbd4 schema:issueNumber 9
117 rdf:type schema:PublicationIssue
118 N9a75f0ab8b9a41b1ae4c64a62673e70e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genome, Human
120 rdf:type schema:DefinedTerm
121 Na0913260874a4ec5a09df651b8f668ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Genetic Diseases, Inborn
123 rdf:type schema:DefinedTerm
124 Na3620a3756ea42ba9e2a1fa025be62ab schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Na669a302985c45409232947ff2287f4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Software
128 rdf:type schema:DefinedTerm
129 Nb4e18efea7b54aba8e1ea5b2b408c617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Data Mining
131 rdf:type schema:DefinedTerm
132 Nb6a8e667ddf34d23a0947f62ebc6cc2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Molecular Sequence Data
134 rdf:type schema:DefinedTerm
135 Nb8f4172662e04322b981dc5bb5d55142 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Phenotype
137 rdf:type schema:DefinedTerm
138 Nc483641b9dab4113934cad578db2f3e3 rdf:first sg:person.010757253652.24
139 rdf:rest N02edead9ff474794854d676cf655a3ce
140 Nd28e41555a284817a339f9fb3cfc5949 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 Nf0879b7c4c814c72be3c03cab389ad58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Databases, Genetic
145 rdf:type schema:DefinedTerm
146 Nf10d11a299a94446bea8adb439854052 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Exome
148 rdf:type schema:DefinedTerm
149 Nf836b0ae6190448a976c443199ab149c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Sequence Analysis, DNA
151 rdf:type schema:DefinedTerm
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
156 schema:name Genetics
157 rdf:type schema:DefinedTerm
158 sg:grant.2529448 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.3484
159 rdf:type schema:MonetaryGrant
160 sg:journal.1033763 schema:issn 1548-7091
161 1548-7105
162 schema:name Nature Methods
163 rdf:type schema:Periodical
164 sg:person.01017141127.73 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
165 schema:familyName Yang
166 schema:givenName Hui
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017141127.73
168 rdf:type schema:Person
169 sg:person.010757253652.24 schema:affiliation https://www.grid.ac/institutes/grid.14095.39
170 schema:familyName Robinson
171 schema:givenName Peter N
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757253652.24
173 rdf:type schema:Person
174 sg:person.01330423671.56 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
175 schema:familyName Wang
176 schema:givenName Kai
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330423671.56
178 rdf:type schema:Person
179 sg:pub.10.1038/nature11677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001826873
180 https://doi.org/10.1038/nature11677
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nature13772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041044240
183 https://doi.org/10.1038/nature13772
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nbt1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343689
186 https://doi.org/10.1038/nbt1203
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmeth.3046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041900698
189 https://doi.org/10.1038/nmeth.3046
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrg3031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038706
192 https://doi.org/10.1038/nrg3031
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-7-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763878
195 https://doi.org/10.1186/1471-2105-7-166
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2164-13-405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025489983
198 https://doi.org/10.1186/1471-2164-13-405
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1472-6947-10-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024764854
201 https://doi.org/10.1186/1472-6947-10-76
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/gm359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023280984
204 https://doi.org/10.1186/gm359
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/humu.21466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708729
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/humu.22078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043902215
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/humu.22531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013151169
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ajhg.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008228824
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ajhg.2012.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012036228
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ajhg.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050139556
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btq330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117020
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btq384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035429197
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/bts368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001009858
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/database/baq020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049326861
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/database/bar065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966252
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/database/bau090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006976326
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gkh070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360708
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkp858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701663
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gkq1106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025655216
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gkq892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037222040
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkq912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001618586
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gkq929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005486377
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gkr972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012078987
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/gkt474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010678848
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.160325.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049848861
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1399-0004.2010.01436.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039625906
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/scitranslmed.3004041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017246217
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1136/jmedgenet-2012-100918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000804270
257 rdf:type schema:CreativeWork
258 https://doi.org/10.4161/fly.19695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046734556
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.14095.39 schema:alternateName Freie Universität Berlin
261 schema:name Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
262 Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
263 Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
264 Max Planck Institute for Molecular Genetics, Berlin, Germany.
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
267 schema:name Department of Psychiatry, University of Southern California, Los Angeles, California, USA.
268 Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.
269 Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA.
270 Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...