Epigenome-wide association studies without the need for cell-type composition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03

AUTHORS

James Zou, Christoph Lippert, David Heckerman, Martin Aryee, Jennifer Listgarten

ABSTRACT

In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition--information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/. More... »

PAGES

309-311

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.2815

DOI

http://dx.doi.org/10.1038/nmeth.2815

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015462245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24464286


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "eScience Research Group, Microsoft Research, Los Angeles, California, USA.", 
            "The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "James", 
        "id": "sg:person.01240457204.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240457204.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "eScience Research Group, Microsoft Research, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lippert", 
        "givenName": "Christoph", 
        "id": "sg:person.01172416212.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172416212.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "eScience Research Group, Microsoft Research, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heckerman", 
        "givenName": "David", 
        "id": "sg:person.01134362461.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Harvard Medical School, Boston, Massachusetts, USA.", 
            "Massachusetts General Hospital, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aryee", 
        "givenName": "Martin", 
        "id": "sg:person.0636535214.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "eScience Research Group, Microsoft Research, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Listgarten", 
        "givenName": "Jennifer", 
        "id": "sg:person.01135357543.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135357543.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.2487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001445372", 
          "https://doi.org/10.1038/nbt.2487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006195414", 
          "https://doi.org/10.1038/nmeth.1681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1121249109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013993305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024942368", 
          "https://doi.org/10.1038/nature11412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2001.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027740393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2011.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035927047", 
          "https://doi.org/10.1038/onc.2011.252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm-2011-0935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040747505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040945693", 
          "https://doi.org/10.1038/nrg3000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045203738", 
          "https://doi.org/10.1038/nmeth.2037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/epi.25430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045770300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047610281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0041361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047981654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2011.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051554988", 
          "https://doi.org/10.1038/ejhg.2011.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051842723", 
          "https://doi.org/10.1038/srep01815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2006.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052019970", 
          "https://doi.org/10.1245/aso.2006.05.028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e31824b96a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060338823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e31824b96a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060338823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e31824b96a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060338823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e31824b96a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060338823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition--information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.2815", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Epigenome-wide association studies without the need for cell-type composition", 
    "pagination": "309-311", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49abc4a3aabbfa31a8945724b9e7791a37ba6e02bd601c801cd8025da3519103"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24464286"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.2815"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015462245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.2815", 
      "https://app.dimensions.ai/details/publication/pub.1015462245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmeth.2815"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2815'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2815'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2815'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2815'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      55 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.2815 schema:about N2951f5e57d7d446691498f8181a1fbae
2 N7202b3d990754eaba76927bdc317eefa
3 Nbffccddade504fb89f426466e6f06301
4 Nc07b8e32fc21437fab0781436eee635f
5 Nca89e5a2108441d494371c3887aec171
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N40c74e32dbd44a459e1bf9fa8730e7e2
9 schema:citation sg:pub.10.1038/ejhg.2011.39
10 sg:pub.10.1038/nature11412
11 sg:pub.10.1038/nbt.2487
12 sg:pub.10.1038/nmeth.1681
13 sg:pub.10.1038/nmeth.2037
14 sg:pub.10.1038/nprot.2008.211
15 sg:pub.10.1038/nrg1916
16 sg:pub.10.1038/nrg2813
17 sg:pub.10.1038/nrg3000
18 sg:pub.10.1038/onc.2011.252
19 sg:pub.10.1038/srep01815
20 sg:pub.10.1186/1471-2105-13-86
21 sg:pub.10.1245/aso.2006.05.028
22 https://doi.org/10.1006/tpbi.2001.1542
23 https://doi.org/10.1073/pnas.1121249109
24 https://doi.org/10.1093/nar/gkn923
25 https://doi.org/10.1097/aln.0b013e31824b96a1
26 https://doi.org/10.1111/j.0006-341x.1999.00997.x
27 https://doi.org/10.1371/journal.pone.0041361
28 https://doi.org/10.1515/cclm-2011-0935
29 https://doi.org/10.4161/epi.25430
30 schema:datePublished 2014-03
31 schema:datePublishedReg 2014-03-01
32 schema:description In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition--information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N507a1ed580224c4cb5dc65148fdc06a0
37 N5e4083451df94950a236435ca41f33db
38 sg:journal.1033763
39 schema:name Epigenome-wide association studies without the need for cell-type composition
40 schema:pagination 309-311
41 schema:productId N01bd7d4383304e09aaf224027917d9bb
42 N31d6ab3494cb4a3d9cf1ab1d08646cbd
43 N7656389a617841988752f3693bc20f45
44 N85bcd3ae97a14a49bba0681233771e2f
45 Ncbf02a9c38344c399ef874827c6b19eb
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015462245
47 https://doi.org/10.1038/nmeth.2815
48 schema:sdDatePublished 2019-04-10T14:47
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0b2a0195d76d4617aeedbb6e26c6423a
51 schema:url http://www.nature.com/articles/nmeth.2815
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N01bd7d4383304e09aaf224027917d9bb schema:name doi
56 schema:value 10.1038/nmeth.2815
57 rdf:type schema:PropertyValue
58 N0b2a0195d76d4617aeedbb6e26c6423a schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N2951f5e57d7d446691498f8181a1fbae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Epigenomics
62 rdf:type schema:DefinedTerm
63 N31d6ab3494cb4a3d9cf1ab1d08646cbd schema:name nlm_unique_id
64 schema:value 101215604
65 rdf:type schema:PropertyValue
66 N40c74e32dbd44a459e1bf9fa8730e7e2 rdf:first sg:person.01240457204.07
67 rdf:rest Nd757b67ab4094dbc823175ea5a9413f3
68 N507a1ed580224c4cb5dc65148fdc06a0 schema:issueNumber 3
69 rdf:type schema:PublicationIssue
70 N5e4083451df94950a236435ca41f33db schema:volumeNumber 11
71 rdf:type schema:PublicationVolume
72 N7202b3d990754eaba76927bdc317eefa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Genome-Wide Association Study
74 rdf:type schema:DefinedTerm
75 N7656389a617841988752f3693bc20f45 schema:name pubmed_id
76 schema:value 24464286
77 rdf:type schema:PropertyValue
78 N77994d498f5f4c05bad0a9e8ce420036 schema:name eScience Research Group, Microsoft Research, Los Angeles, California, USA.
79 rdf:type schema:Organization
80 N78e3a55b211d4bacb1353dfb5f8c3f93 rdf:first sg:person.01134362461.98
81 rdf:rest N9b80db7a3dda481bb6b1b663452d8875
82 N85bcd3ae97a14a49bba0681233771e2f schema:name readcube_id
83 schema:value 49abc4a3aabbfa31a8945724b9e7791a37ba6e02bd601c801cd8025da3519103
84 rdf:type schema:PropertyValue
85 N9b80db7a3dda481bb6b1b663452d8875 rdf:first sg:person.0636535214.09
86 rdf:rest Naac9c09b3eab488bb45ebc6a26b13f51
87 Naac9c09b3eab488bb45ebc6a26b13f51 rdf:first sg:person.01135357543.32
88 rdf:rest rdf:nil
89 Nbffccddade504fb89f426466e6f06301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Linear Models
91 rdf:type schema:DefinedTerm
92 Nc07b8e32fc21437fab0781436eee635f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cells
94 rdf:type schema:DefinedTerm
95 Nca4e2ab87652419bb6f909105b8d0933 schema:name eScience Research Group, Microsoft Research, Los Angeles, California, USA.
96 rdf:type schema:Organization
97 Nca89e5a2108441d494371c3887aec171 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 Ncbf02a9c38344c399ef874827c6b19eb schema:name dimensions_id
101 schema:value pub.1015462245
102 rdf:type schema:PropertyValue
103 Nd757b67ab4094dbc823175ea5a9413f3 rdf:first sg:person.01172416212.60
104 rdf:rest N78e3a55b211d4bacb1353dfb5f8c3f93
105 Nec15fff15d5c4082b63a19cf18ecd000 schema:name eScience Research Group, Microsoft Research, Los Angeles, California, USA.
106 rdf:type schema:Organization
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1033763 schema:issn 1548-7091
114 1548-7105
115 schema:name Nature Methods
116 rdf:type schema:Periodical
117 sg:person.01134362461.98 schema:affiliation N77994d498f5f4c05bad0a9e8ce420036
118 schema:familyName Heckerman
119 schema:givenName David
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98
121 rdf:type schema:Person
122 sg:person.01135357543.32 schema:affiliation Nec15fff15d5c4082b63a19cf18ecd000
123 schema:familyName Listgarten
124 schema:givenName Jennifer
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135357543.32
126 rdf:type schema:Person
127 sg:person.01172416212.60 schema:affiliation Nca4e2ab87652419bb6f909105b8d0933
128 schema:familyName Lippert
129 schema:givenName Christoph
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172416212.60
131 rdf:type schema:Person
132 sg:person.01240457204.07 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
133 schema:familyName Zou
134 schema:givenName James
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240457204.07
136 rdf:type schema:Person
137 sg:person.0636535214.09 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
138 schema:familyName Aryee
139 schema:givenName Martin
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09
141 rdf:type schema:Person
142 sg:pub.10.1038/ejhg.2011.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554988
143 https://doi.org/10.1038/ejhg.2011.39
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
146 https://doi.org/10.1038/nature11412
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt.2487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001445372
149 https://doi.org/10.1038/nbt.2487
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmeth.1681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006195414
152 https://doi.org/10.1038/nmeth.1681
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmeth.2037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045203738
155 https://doi.org/10.1038/nmeth.2037
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
158 https://doi.org/10.1038/nprot.2008.211
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
161 https://doi.org/10.1038/nrg1916
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nrg2813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354004
164 https://doi.org/10.1038/nrg2813
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrg3000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040945693
167 https://doi.org/10.1038/nrg3000
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/onc.2011.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035927047
170 https://doi.org/10.1038/onc.2011.252
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/srep01815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051842723
173 https://doi.org/10.1038/srep01815
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
176 https://doi.org/10.1186/1471-2105-13-86
177 rdf:type schema:CreativeWork
178 sg:pub.10.1245/aso.2006.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052019970
179 https://doi.org/10.1245/aso.2006.05.028
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1006/tpbi.2001.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027740393
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.1121249109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013993305
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkn923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047610281
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1097/aln.0b013e31824b96a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060338823
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.pone.0041361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047981654
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1515/cclm-2011-0935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040747505
194 rdf:type schema:CreativeWork
195 https://doi.org/10.4161/epi.25430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045770300
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
198 schema:name Harvard Medical School, Boston, Massachusetts, USA.
199 Massachusetts General Hospital, Boston, Massachusetts, USA.
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
202 schema:name School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
203 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
204 eScience Research Group, Microsoft Research, Los Angeles, California, USA.
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...