Automated identification of functional dynamic networks from X-ray crystallography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-08-04

AUTHORS

Henry van den Bedem, Gira Bhabha, Kun Yang, Peter E. Wright, James S. Fraser

ABSTRACT

Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active-site conformations and consequently alter protein function. Observing alternative conformations at low levels of electron density, in addition to comparison of independently determined X-ray crystal structures, can provide mechanistic insights into conformational dynamics. Here we report a new algorithm, CONTACT, that identifies contact networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks determined for Escherichia coli dihydrofolate reductase (ecDHFR) predict the observed long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild-type and mutant ecDHFR suggests that mutations that alter optimized contact networks of coordinated motions can impair catalytic function. CONTACT-guided mutagenesis can exploit the structure-dynamics-function relationship in protein engineering and design. More... »

PAGES

896-902

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.2592

DOI

http://dx.doi.org/10.1038/nmeth.2592

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035803529

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23913260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclophilin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Magnetic Resonance, Biomolecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetrahydrofolate Dehydrogenase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Bedem", 
        "givenName": "Henry", 
        "id": "sg:person.01066367315.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066367315.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.214007.0", 
          "name": [
            "Deptartment of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA", 
            "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhabha", 
        "givenName": "Gira", 
        "id": "sg:person.0620045144.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620045144.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.214007.0", 
          "name": [
            "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wright", 
        "givenName": "Peter E.", 
        "id": "sg:person.013650454057.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650454057.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraser", 
        "givenName": "James S.", 
        "id": "sg:person.01207615313.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207615313.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nchembio.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007403685", 
          "https://doi.org/10.1038/nchembio.98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046136159", 
          "https://doi.org/10.1038/nchembio.347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050450178", 
          "https://doi.org/10.1038/nature03199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00179346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011213458", 
          "https://doi.org/10.1007/bf00179346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275455", 
          "https://doi.org/10.1038/nature04105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033159394", 
          "https://doi.org/10.1038/nature08615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/355472a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048571716", 
          "https://doi.org/10.1038/355472a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-010-0611-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002943115", 
          "https://doi.org/10.1007/s00018-010-0611-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08-04", 
    "datePublishedReg": "2013-08-04", 
    "description": "Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active-site conformations and consequently alter protein function. Observing alternative conformations at low levels of electron density, in addition to comparison of independently determined X-ray crystal structures, can provide mechanistic insights into conformational dynamics. Here we report a new algorithm, CONTACT, that identifies contact networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks determined for Escherichia coli dihydrofolate reductase (ecDHFR) predict the observed long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild-type and mutant ecDHFR suggests that mutations that alter optimized contact networks of coordinated motions can impair catalytic function. CONTACT-guided mutagenesis can exploit the structure-dynamics-function relationship in protein engineering and design. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmeth.2592", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2518968", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7745491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355511", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699233", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2696939", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "Escherichia coli dihydrofolate reductase", 
      "protein function", 
      "NMR chemical shift perturbations", 
      "chemical shift perturbations", 
      "coli dihydrofolate reductase", 
      "active site conformation", 
      "allosteric mutations", 
      "protein engineering", 
      "shift perturbations", 
      "conformational dynamics", 
      "allosteric ligands", 
      "catalytic function", 
      "alternative conformations", 
      "long-range patterns", 
      "ray crystallography data", 
      "distal mutations", 
      "conformational substates", 
      "dihydrofolate reductase", 
      "function relationships", 
      "mechanistic insights", 
      "mutations", 
      "ray crystal structure", 
      "crystallography data", 
      "ray crystallography", 
      "conformation", 
      "mutagenesis", 
      "crystal structure", 
      "reductase", 
      "residues", 
      "low levels", 
      "function", 
      "contact networks", 
      "crystallography", 
      "substates", 
      "identification", 
      "insights", 
      "ligands", 
      "dynamic networks", 
      "patterns", 
      "heterogeneous residues", 
      "perturbations", 
      "dynamics", 
      "levels", 
      "structure", 
      "contact", 
      "addition", 
      "exchange", 
      "engineering", 
      "coordinated motion", 
      "network", 
      "comparison", 
      "relationship", 
      "density", 
      "data", 
      "electron density", 
      "design", 
      "new algorithm", 
      "motion", 
      "algorithm", 
      "specific active-site conformations", 
      "observed long-range pattern", 
      "mutant ecDHFR", 
      "functional dynamic networks"
    ], 
    "name": "Automated identification of functional dynamic networks from X-ray crystallography", 
    "pagination": "896-902", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035803529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.2592"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23913260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.2592", 
      "https://app.dimensions.ai/details/publication/pub.1035803529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmeth.2592"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2592'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2592'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2592'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.2592'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      22 PREDICATES      111 URIs      95 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.2592 schema:about N04b3de702bba4d14867922dfe14c5bd4
2 N1c0ec262e4e3494da81de3b27d34be06
3 N394833143efe4b83867a2c24930d131e
4 N435c0c6d57eb43ac9f857965bb660088
5 N4710741f2d774be78620da94fe604054
6 N5911d3d6056a41e1ae9b536660833ba8
7 N5cffe9e5ff144fb49f1455fe48ef5a48
8 N677d9732d61947bfbde101a2007233d0
9 N6e6d882f61504c8684ae4e4dd4ff56b1
10 N8e535e2a09774d0d8110502c29a102b5
11 Ncb472cf5f4814f1da689ec88e0792cd6
12 Nd534f764a0c74cff8ea79c387c16d257
13 Nd53ad9a427b0430ba197200005b9f2be
14 Nfd028ca8c8e94edc8eb3f7b533db4899
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author N3e61446699a040f9afe310c81eea86c4
18 schema:citation sg:pub.10.1007/bf00179346
19 sg:pub.10.1007/s00018-010-0611-4
20 sg:pub.10.1038/355472a0
21 sg:pub.10.1038/nature03199
22 sg:pub.10.1038/nature04105
23 sg:pub.10.1038/nature08615
24 sg:pub.10.1038/nchembio.347
25 sg:pub.10.1038/nchembio.98
26 schema:datePublished 2013-08-04
27 schema:datePublishedReg 2013-08-04
28 schema:description Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active-site conformations and consequently alter protein function. Observing alternative conformations at low levels of electron density, in addition to comparison of independently determined X-ray crystal structures, can provide mechanistic insights into conformational dynamics. Here we report a new algorithm, CONTACT, that identifies contact networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks determined for Escherichia coli dihydrofolate reductase (ecDHFR) predict the observed long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild-type and mutant ecDHFR suggests that mutations that alter optimized contact networks of coordinated motions can impair catalytic function. CONTACT-guided mutagenesis can exploit the structure-dynamics-function relationship in protein engineering and design.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N7c0493df109f4c75844c7ea72d9528c1
33 Nad3d29575d7943ef975e32046a185c1e
34 sg:journal.1033763
35 schema:keywords Escherichia coli dihydrofolate reductase
36 NMR chemical shift perturbations
37 active site conformation
38 addition
39 algorithm
40 allosteric ligands
41 allosteric mutations
42 alternative conformations
43 catalytic function
44 chemical shift perturbations
45 coli dihydrofolate reductase
46 comparison
47 conformation
48 conformational dynamics
49 conformational substates
50 contact
51 contact networks
52 coordinated motion
53 crystal structure
54 crystallography
55 crystallography data
56 data
57 density
58 design
59 dihydrofolate reductase
60 distal mutations
61 dynamic networks
62 dynamics
63 electron density
64 engineering
65 exchange
66 function
67 function relationships
68 functional dynamic networks
69 heterogeneous residues
70 identification
71 insights
72 levels
73 ligands
74 long-range patterns
75 low levels
76 mechanistic insights
77 motion
78 mutagenesis
79 mutant ecDHFR
80 mutations
81 network
82 new algorithm
83 observed long-range pattern
84 patterns
85 perturbations
86 protein engineering
87 protein function
88 ray crystal structure
89 ray crystallography
90 ray crystallography data
91 reductase
92 relationship
93 residues
94 shift perturbations
95 specific active-site conformations
96 structure
97 substates
98 schema:name Automated identification of functional dynamic networks from X-ray crystallography
99 schema:pagination 896-902
100 schema:productId N82d8dabbdd4e4c3fa629be1d2c5eb508
101 N91aa0aec0c51484c80c3c35b91d1e8fa
102 Nb604856f921d4393950322d3c1b0982d
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035803529
104 https://doi.org/10.1038/nmeth.2592
105 schema:sdDatePublished 2021-12-01T19:29
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N30691568a7ba40c8a0161e11b3e0c80f
108 schema:url https://doi.org/10.1038/nmeth.2592
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N04b3de702bba4d14867922dfe14c5bd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Structure-Activity Relationship
114 rdf:type schema:DefinedTerm
115 N0d44a8f3b4b7419ab9b73021fcb2c556 schema:affiliation grid-institutes:grid.168010.e
116 schema:familyName Yang
117 schema:givenName Kun
118 rdf:type schema:Person
119 N1afc62c0aef74fff9ecb252735ae1b9c rdf:first N0d44a8f3b4b7419ab9b73021fcb2c556
120 rdf:rest Nd74568e2c8714dc48812f1a76c51e10d
121 N1c0ec262e4e3494da81de3b27d34be06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Nuclear Magnetic Resonance, Biomolecular
123 rdf:type schema:DefinedTerm
124 N1e6aec8469414f04bde059672e2f7cc9 rdf:first sg:person.01207615313.29
125 rdf:rest rdf:nil
126 N30691568a7ba40c8a0161e11b3e0c80f schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N394833143efe4b83867a2c24930d131e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Binding Sites
130 rdf:type schema:DefinedTerm
131 N3e61446699a040f9afe310c81eea86c4 rdf:first sg:person.01066367315.03
132 rdf:rest N4bca567a8f804cf1aac1d29d59b1b220
133 N435c0c6d57eb43ac9f857965bb660088 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Escherichia coli Proteins
135 rdf:type schema:DefinedTerm
136 N4710741f2d774be78620da94fe604054 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Protein Conformation
138 rdf:type schema:DefinedTerm
139 N4bca567a8f804cf1aac1d29d59b1b220 rdf:first sg:person.0620045144.88
140 rdf:rest N1afc62c0aef74fff9ecb252735ae1b9c
141 N5911d3d6056a41e1ae9b536660833ba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Tetrahydrofolate Dehydrogenase
143 rdf:type schema:DefinedTerm
144 N5cffe9e5ff144fb49f1455fe48ef5a48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Crystallography, X-Ray
146 rdf:type schema:DefinedTerm
147 N677d9732d61947bfbde101a2007233d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Models, Molecular
149 rdf:type schema:DefinedTerm
150 N6e6d882f61504c8684ae4e4dd4ff56b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Cyclophilin A
152 rdf:type schema:DefinedTerm
153 N7c0493df109f4c75844c7ea72d9528c1 schema:issueNumber 9
154 rdf:type schema:PublicationIssue
155 N82d8dabbdd4e4c3fa629be1d2c5eb508 schema:name doi
156 schema:value 10.1038/nmeth.2592
157 rdf:type schema:PropertyValue
158 N8e535e2a09774d0d8110502c29a102b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Algorithms
160 rdf:type schema:DefinedTerm
161 N91aa0aec0c51484c80c3c35b91d1e8fa schema:name dimensions_id
162 schema:value pub.1035803529
163 rdf:type schema:PropertyValue
164 Nad3d29575d7943ef975e32046a185c1e schema:volumeNumber 10
165 rdf:type schema:PublicationVolume
166 Nb604856f921d4393950322d3c1b0982d schema:name pubmed_id
167 schema:value 23913260
168 rdf:type schema:PropertyValue
169 Ncb472cf5f4814f1da689ec88e0792cd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Mutagenesis
171 rdf:type schema:DefinedTerm
172 Nd534f764a0c74cff8ea79c387c16d257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Mutation
174 rdf:type schema:DefinedTerm
175 Nd53ad9a427b0430ba197200005b9f2be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 Nd74568e2c8714dc48812f1a76c51e10d rdf:first sg:person.013650454057.14
179 rdf:rest N1e6aec8469414f04bde059672e2f7cc9
180 Nfd028ca8c8e94edc8eb3f7b533db4899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Proteins
182 rdf:type schema:DefinedTerm
183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biological Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
187 schema:name Biochemistry and Cell Biology
188 rdf:type schema:DefinedTerm
189 sg:grant.2355511 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.2592
190 rdf:type schema:MonetaryGrant
191 sg:grant.2518968 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.2592
192 rdf:type schema:MonetaryGrant
193 sg:grant.2696939 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.2592
194 rdf:type schema:MonetaryGrant
195 sg:grant.2699233 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.2592
196 rdf:type schema:MonetaryGrant
197 sg:grant.7745491 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.2592
198 rdf:type schema:MonetaryGrant
199 sg:journal.1033763 schema:issn 1548-7091
200 1548-7105
201 schema:name Nature Methods
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.01066367315.03 schema:affiliation grid-institutes:None
205 schema:familyName van den Bedem
206 schema:givenName Henry
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066367315.03
208 rdf:type schema:Person
209 sg:person.01207615313.29 schema:affiliation grid-institutes:grid.266102.1
210 schema:familyName Fraser
211 schema:givenName James S.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207615313.29
213 rdf:type schema:Person
214 sg:person.013650454057.14 schema:affiliation grid-institutes:grid.214007.0
215 schema:familyName Wright
216 schema:givenName Peter E.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650454057.14
218 rdf:type schema:Person
219 sg:person.0620045144.88 schema:affiliation grid-institutes:grid.214007.0
220 schema:familyName Bhabha
221 schema:givenName Gira
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620045144.88
223 rdf:type schema:Person
224 sg:pub.10.1007/bf00179346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011213458
225 https://doi.org/10.1007/bf00179346
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s00018-010-0611-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002943115
228 https://doi.org/10.1007/s00018-010-0611-4
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/355472a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048571716
231 https://doi.org/10.1038/355472a0
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature03199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050450178
234 https://doi.org/10.1038/nature03199
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature04105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275455
237 https://doi.org/10.1038/nature04105
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nature08615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033159394
240 https://doi.org/10.1038/nature08615
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nchembio.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046136159
243 https://doi.org/10.1038/nchembio.347
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nchembio.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007403685
246 https://doi.org/10.1038/nchembio.98
247 rdf:type schema:CreativeWork
248 grid-institutes:None schema:alternateName Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford, CA, USA
249 schema:name Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford, CA, USA
250 rdf:type schema:Organization
251 grid-institutes:grid.168010.e schema:alternateName Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
252 schema:name Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
253 rdf:type schema:Organization
254 grid-institutes:grid.214007.0 schema:alternateName Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
255 schema:name Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
256 Deptartment of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
257 rdf:type schema:Organization
258 grid-institutes:grid.266102.1 schema:alternateName Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
259 schema:name Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...