Ontology type: schema:ScholarlyArticle Open Access: True
2012-04
AUTHORSBen Langmead, Steven L Salzberg
ABSTRACTAs the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy. More... »
PAGES357
http://scigraph.springernature.com/pub.10.1038/nmeth.1923
DOIhttp://dx.doi.org/10.1038/nmeth.1923
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006541515
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/22388286
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Databases, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genome, Human",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Alignment",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, DNA",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Johns Hopkins University",
"id": "https://www.grid.ac/institutes/grid.21107.35",
"name": [
"Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA.",
"Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA."
],
"type": "Organization"
},
"familyName": "Langmead",
"givenName": "Ben",
"id": "sg:person.011763134307.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Johns Hopkins University",
"id": "https://www.grid.ac/institutes/grid.21107.35",
"name": [
"Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA.",
"Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.",
"McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA."
],
"type": "Organization"
},
"familyName": "Salzberg",
"givenName": "Steven L",
"id": "sg:person.01223441713.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nature10242",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007480955",
"https://doi.org/10.1038/nature10242"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.123638.111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009365831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature09534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010608717",
"https://doi.org/10.1038/nature09534"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature09534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010608717",
"https://doi.org/10.1038/nature09534"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp698",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012031985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp336",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016441007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbq015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019203929"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbq015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019203929"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023014918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.1621",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031035095",
"https://doi.org/10.1038/nbt.1621"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.107524.110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032096953"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038266369"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2010-11-8-r83",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039544540",
"https://doi.org/10.1186/gb-2010-11-8-r83"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2009-10-3-r25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049583368",
"https://doi.org/10.1186/gb-2009-10-3-r25"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-04",
"datePublishedReg": "2012-04-01",
"description": "As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.",
"genre": "research_article",
"id": "sg:pub.10.1038/nmeth.1923",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2529425",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2529453",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2519905",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1033763",
"issn": [
"1548-7091",
"1548-7105"
],
"name": "Nature Methods",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Fast gapped-read alignment with Bowtie 2",
"pagination": "357",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1f287ea7282971e159c4e2bc9f0786d0abbf254cec8f2e3346071011958ae247"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"22388286"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101215604"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nmeth.1923"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006541515"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nmeth.1923",
"https://app.dimensions.ai/details/publication/pub.1006541515"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/nmeth.1923"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1923'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1923'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1923'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1923'
This table displays all metadata directly associated to this object as RDF triples.
153 TRIPLES
21 PREDICATES
48 URIs
28 LITERALS
16 BLANK NODES